Skip to main content
Log in

Molecular dynamics simulation of interactions in glycolytic enzymes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Two glycolytic enzymes, phosphoglycerate mutase (PGM) and enolase from Saccharomyces cerevisiae, have been chosen to detect complex formation and possible channeling, using molecular dynamics simulation. The enzymes were separated by 10 Å distance and placed in a water-filled box of size 173 × 173 × 173 Å. Three different orientations have been investigated. The two initial 3-phosphoglycerate substrate molecules near the active centers of the initial structure of PGM have been replaced with final product (2-phosphoglycerate) molecules, and 150 mM NaCl together with three Mg2+ ions have been added to the system to observe post-catalytic activity under near-physiological conditions. Analysis of interaction energies and conformation changes for 3 nsec simulation indicates that PGM and enolase do show binding affinity between their near active regions, which is necessary for channeling to occur. Interaction of the C-terminal residues Ala239 and Val240 of PGM (which partially “cap” the 2-phosphoglycerate) with enolase also favors the existence of channeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MD:

molecular dynamics

2PG:

2-phosphoglycerate

3PG:

3-phosphoglycerate

PGM:

phosphoglycerate mutase

References

  1. Ovadi, J. (1991) J. Theor. Biol., 152, 1–22.

    CAS  PubMed  Google Scholar 

  2. Agius, L., and Sherratt, H. S. A. (1997) Channeling in Intermediary Metabolism, Portland Press, London, pp. 1–11.

    Google Scholar 

  3. Clegg, J. S., and Jackson, S. A. (1989) Biochem. Biophys. Res. Commun., 160, 1409–1414.

    Article  CAS  PubMed  Google Scholar 

  4. Shearwin, K., Nanhua, C., and Masters, C. (1990) Biochem. Int., 21, 53–60.

    CAS  PubMed  Google Scholar 

  5. Shearwin, K., Nanhua, C., and Masters, C. (1990) Biochem. Int., 22, 735–740.

    CAS  PubMed  Google Scholar 

  6. Edwards, S. R., Braley, R., and Chaffin, W. L. (1999) FEMS Microbiol. Lett., 177, 211–216.

    CAS  PubMed  Google Scholar 

  7. Motshwene, P., Brandt, W., and Lindsey, G. (2003) Biochem. J., 369, 357–362.

    Article  CAS  PubMed  Google Scholar 

  8. Batke, J. (1991) J. Theor. Biol., 152, 41–46.

    CAS  PubMed  Google Scholar 

  9. Srivastava, D. K. (1991) J. Theor. Biol., 152, 93–100.

    CAS  PubMed  Google Scholar 

  10. Batke, J., Nazaryan, K. B., and Karapetian, N. H. (1988) Arch. Biochem. Biophys., 264, 510–518.

    Article  CAS  PubMed  Google Scholar 

  11. Nazaryan, K., Climent, F., Simonian, S., Tompa, P., and Batke, J. (1992) Arch. Biochem. Biophys., 296, 650–653.

    Article  CAS  PubMed  Google Scholar 

  12. Ouporov, I. V., Knull, H. R., Huber, A., and Thomasson, K. A. (2001) J. Biophys., 80, 2527–2535.

    CAS  Google Scholar 

  13. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Sindyalov, I. N., and Bourne, P. E. (2000) Nucleic Acids Res., 28, 235–242.

    Article  CAS  PubMed  Google Scholar 

  14. Crowhurst, G. S., Dalby, A. R., Isupov, M. N., Campbell, J. W., and Littlechild, J. A. (1999) J. Biol. Cryst., 55, 1822–1826.

    CAS  Google Scholar 

  15. Zhang, E., Brewer, J. M., Minor, W., Carreira, L. A., and Lebioda, L. (1997) Biochemistry, 36, 12526–12534.

    CAS  PubMed  Google Scholar 

  16. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) J. Comp. Chem., 4, 187–217.

    CAS  Google Scholar 

  17. HyperChem™ Professional 7.51, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA.

  18. Humphrey, W., Dalke, A., and Schulten, K. (1996) J. Mol. Graph., 14, 33–38.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nazaryan.

Additional information

Published in Russian in Biokhimiya, 2006, Vol. 71, No. 4, pp. 464–470.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM05-215, February 19, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakobyan, D., Nazaryan, K. Molecular dynamics simulation of interactions in glycolytic enzymes. Biochemistry (Moscow) 71, 370–375 (2006). https://doi.org/10.1134/S0006297906040043

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297906040043

Key words

Navigation