Biochemistry (Moscow)

, Volume 71, Issue 2, pp 173–177 | Cite as

Protein composition and native state of pigments of thylakoid membrane of wheat genotypes differently tolerant to water stress

  • I. M. Guseynova
  • S. Y. Suleymanov
  • J. A. Aliyev


Protein composition and native state of chlorophylls were analyzed in two wheat (Triticum durum L.) genotypes with different tolerance to drought, Barakatli-95 (drought-tolerant) and Garagylchyg-2 (drought-sensitive), during water deficit. It is shown that the plants subjected to water deficit appear to have a slight increase in α-and β-subunits of CF1ATP-synthase complex (57.5 and 55 kD, respectively) in Barakatli-95 and their lower content in Garagylchyg-2. Steady-state levels of the core antenna of PS II (CP47 and CP43) and light-harvesting Chl a/b-apoproteins (LHC) II in the 29.5–24 kD region remained more or less unchanged in both wheat genotypes. The synthesis of 36 kD protein and content of low-molecular-weight polypeptides (21.5, 16.5, and 14 kD) were noticeably increased in the tolerant genotype Barakatli-95. Drought caused significant changes in the carotenoid region of the spectrum (400–500 nm) in drought-sensitive genotype Garagylchyg-2 (especially in the content of pigments of the violaxanthin cycle). A shift of the main band from 740–742 to 738 nm is observed in the fluorescence spectra (77 K) of chloroplasts from both genotypes under water deficiency, and there is a stimulation of the ratio of fluorescence band intensity F687/F740.

Key words

wheat polypeptides fluorescence drought chloroplast adaptation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weinheimer, M. A., Inci, F., Mavituna, M., Ozkan, F., Oktem, H. A., and Yucel, M. (1995) in Biotechnology for Sustainable Development (Malik, K. A., Nasim, A., and Khalid, A. M., eds.) National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan, pp. 171–178.Google Scholar
  2. 2.
    Comic, J., and Massacci, A. (1996) in Photosynthesis and the Environment (Baker, N. R., ed.) Kluwer Academic Publishers, Dordrecht-Boston-London, pp. 347–366.Google Scholar
  3. 3.
    Aliyev, J. A. (1998) in Photosynthesis: Mechanisms and Effects (Gamb, G., ed.) Kluwer Academic Publishers, Dordrecht-Boston-London, pp. 3829–3832.Google Scholar
  4. 4.
    Aliyev, J. A. (2002) Izvestiya NAN Azerbaijana (Ser. Biol. Nauki), 1–6, 30–40.Google Scholar
  5. 5.
    Lawlor, D. W. (1995) in Environment and Plant Metabolism. Flexibility and Acclimation (Smirnoff, N., ed.) Bios Scientific Publishers, Oxford, pp. 129–160.Google Scholar
  6. 6.
    Labhilili, M., Jouchier, P., and Gautien, M. F. (1995) Plant Sci., 112, 219–230.CrossRefGoogle Scholar
  7. 7.
    Quartacci, M. F., Pinzino, C., Sgherri, C. L. M., and Navari-Izzo, F. (1995) Plant Physiol., 108, 191–197.PubMedGoogle Scholar
  8. 8.
    Navari-Izzo, F., Guartacci, M. F., Pinzino, C., Rascio, N., Vazzana, C., and Sgherri, C. L. M. (2000) Plant Physiol., 124, 1427–1436.PubMedCrossRefGoogle Scholar
  9. 9.
    Li, G., Knowles, P. F., Murhpy, D. J., and Marsh, D. (1989) Biochemistry, 28, 7446–7452.CrossRefGoogle Scholar
  10. 10.
    Lisogorov, S. D., and Ushkarenko, V. A. (1985) Practicum in Meliorative Agriculture [in Russian], Agropromizdat, Moscow.Google Scholar
  11. 11.
    Aliyev, J. A., Suleymanov, S. Y., Guseynova, I. M., Asadov, A. A., and Ismaylov, M. A. (1992) Biokhimiya, 57, 679–686.Google Scholar
  12. 12.
    Mc-Kinney, G. (1941) J. Biol. Chem., 140, 315–322.Google Scholar
  13. 13.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  14. 14.
    Asadov, A. A., Zulfugarov, I. S., Suleymanov, S. Y., and Aliyev, J. A. (1986) DAN SSSR, 287, 444–447.Google Scholar
  15. 15.
    Giardi, M. T., Cona, A., Kucera, T., Masojidek, J., and Mattoo, A. K. (1995) in Proc. Int. Cong. Integrated Studies on Drought Tolerance of Higher Plants “Inter Drought 95”, pp. 1–5.Google Scholar
  16. 16.
    Masojidek, J., Trivedi, S., Halshaw, L., Alexiou, A., and Hall, D. O. (1991) Plant Physiol., 96, 198–207.PubMedGoogle Scholar
  17. 17.
    Singh, N. S., Handa, A. K., Hasegawa, P. M., and Bressan, R. A. (1985) Plant Physiol., 79, 126–137.PubMedCrossRefGoogle Scholar
  18. 18.
    Satoh, H., Uchida, A., Nakayama, K., and Okada, M. (2001) Plant Cell Physiol., 42, 906–911.PubMedCrossRefGoogle Scholar
  19. 19.
    Kamimura, Y., Mori, T., Yamasaki, T., and Katoh, S. (1997) Plant Cell Physiol., 38, 133–138.PubMedGoogle Scholar
  20. 20.
    Downing, W. L., Mauxion, F., Fauvarque, M.-O., Reviron, M.-P., de Vienne, D., Vartanian, N., and Giraudat, J. A. (1992) Plant J., 2, 685–693.PubMedCrossRefGoogle Scholar
  21. 21.
    Annamalai, P., and Yanagihara, S. (1999) J. Plant Physiol., 155, 226–233.Google Scholar
  22. 22.
    Adamska, I., Roobol-Boza, M., Lindahl, M., and Andersson, B. (1999) Eur. J. Biochem., 269, 453–460.CrossRefGoogle Scholar
  23. 23.
    Aliyev, J. A., Guseynova, I. M., Suleymanov, S. Y., and Zulfugarov, I. S. (2001) Biochemistry (Moscow), 66, 490–495.CrossRefGoogle Scholar
  24. 24.
    Marguardt, J., and Bassi, R. (1993) Planta, 191, 265–273.Google Scholar
  25. 25.
    Melis, A. (1991) Biochim. Biophys. Acta, 1052, 87–106.Google Scholar
  26. 26.
    Sippola, K., Kanervo, E., Murata, N., and Aro, E.-M. (1998) Eur. J. Biochem., 251, 641–648.PubMedCrossRefGoogle Scholar
  27. 27.
    Chaloub, R. M., Silva, L. M., Roodrigues, M. A., and Santos, C. P. D. (2003) Photosynth. Res., 78, 143–152.PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang, L., and Aro, E.-M. (2001) FEBS Lett., 512, 13–18.CrossRefGoogle Scholar
  29. 29.
    Loggini, B., Scartazza, A., Brugnoli, E., and Navari-Izzo, F. (1999) Plant Physiol., 119, 1091–1099.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • I. M. Guseynova
    • 1
  • S. Y. Suleymanov
    • 1
  • J. A. Aliyev
    • 1
  1. 1.Institute of BotanyNational Academy of SciencesBakuAzerbaijan

Personalised recommendations