Skip to main content
Log in

On Forced Oscillations in a Relay System with Hysteresis

  • NONLINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper discusses the phenomenon associated with the forced synchronization (“entrainment of a self-sustained oscillator by an external force”) in a relay system with hysteresis, which manifests itself in the occurrence of periodic motions close to the rhythmic activity of neurons, when packets of fast oscillations are interspersed with intervals of the slow dynamics. To study this phenomenon, we introduce a circle mapping, which, depending on the parameters, can be a circle diffeomorphism or discontinuous map (“gap map”). In both cases, this mapping demonstrates the so-called period-adding bifurcation structure. It is demonstrated that packets number of fast oscillations in the period of periodic motion is determined by the rotation number, and the length of the intervals between the packets may be found of the boundaries of the absorbing interval. The change in the number of pulses in the packet occurs through the border-collision bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Neimark, Yu.I., Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii (The Method of Point Maps in the Theory of Nonlinear Oscillations), Moscow: Nauka, 1972.

    Google Scholar 

  2. Tsypkin, Ya.Z., Relay Control Systems, United Kingdom: Cambridge, University Press, 1984.

  3. Gaushus, E.V., Issledovanie dinamicheskikh sistem metodom tochechnykh preobrazovanii (Investigation of Dynamical Systems Using the Method of Point Maps), Moscow: Nauka, 1976.

    Google Scholar 

  4. Hale, J.K. and Kocak, H., Dynamics and Bifurcations, New York, Berlin, Heidelberg: Springer-Verlag, 1996.

    Google Scholar 

  5. Utkin, V.I., Sliding Modes in Control Optimization, Berlin, Germany: Springer-Verlag, 1992.

    Book  Google Scholar 

  6. Filippov, A.F., Differential Equations with Discontinuous Right-hand Sides, Dortrecht, The Netherlands: Kluwer Academic Publishers, 1988.

    Book  Google Scholar 

  7. Arnold, V.I., Small Denominators. I. Mappings of the Circumference onto Itself, Am. Math. Soc. Transl.: Ser. II, 1965, vol. 46, pp. 213–284.

    Google Scholar 

  8. Arnold, V.I., Cardiac Arrhythmias and Circle Mappings, Chaos, 1991, vol. 1, no. 1, pp. 20–24.

    Article  MathSciNet  Google Scholar 

  9. Glass, L., Cardiac Arrhythmias and Circle Maps-A Classical Problem, Chaos, 1991, vol. 1, no. 1, pp. 13–19.

    Article  MathSciNet  Google Scholar 

  10. Keener, J.P., On Cardiac Arrythmias: AV Conduction Block, J. Math. Biol., 1981, vol. 12, pp. 215–225.

    Article  MathSciNet  Google Scholar 

  11. Borbély, A.A., Daan, S., Wirz-Justice, A., and Deboer, T., The Two-Process Model of Sleep Regulation: A Reappraisal, J. Sleep Res., 2016, vol. 25, pp. 131–143.

    Article  Google Scholar 

  12. Bailey, M.P., Derks, G., and Skeldon, A.C., Circle Maps with Gaps: Understanding the Dynamics of the Two-Process Model for SleepWake Regulation, Eur. J. Appl. Math., 2018, vol. 29, pp. 845–868.

    Article  Google Scholar 

  13. Derks, G., Glendinning, P.A., and Skeldon, A.C., Creation of Discontinuities in Circle Maps, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2021, vol. 477, p. 20200872.

  14. Sayli, M., Skeldon, A.C., Thul, R., Nicks, R., and Coombes, S., The Two-Process Model for SleepWake Regulation: A Nonsmooth Dynamics Perspective, Physica D, 2023, vol. 444, p. 133595.

  15. Bressloff, P.C. and Stark, J., Neuronal Dynamics based on Discontinuous Circle Maps, Phys. Lett. A, 1990, vol. 150, nos. 3, 4, pp. 187–195.

    Article  MathSciNet  Google Scholar 

  16. Coombes, S., Thul, R., and Wedgwood, K.C.A., Nonsmooth Dynamics in Spiking Neuron, Physica D, 2012, vol. 241, pp. 2042–2057.

    Article  MathSciNet  Google Scholar 

  17. Rulkov, N.F., Modeling of Spiking-Bursting Neural Behavior Using Two-Dimensional Map, Physical Review E, 2002, vol. 65, no. 4, p. 041922.

  18. Izhikevich, E.M., Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, The Cambridge, Massachusetts: MIT Press, 2007.

    Google Scholar 

  19. Dmitrichev, A.S., Kasatkin, D.V., Klinshov, V.V., Kirillov, S.Yu., Maslennikov, O.V., Shchapin, D.S., and Nekorkin, V.I., Nonlinear Dynamical Models of Neurons, Izvestiya VUZ. Applied Nonlinear Dynamics, 2018, vol. 26, nos. 4–5, pp. 5–58.

    Google Scholar 

  20. Shilnikov, A.L. and Rulkov, N.F., Subthreshold Oscillations in a Map-Based Neuron Model, Phys. Lett. A, 2004, vol. 328, pp. 177–184.

    Article  Google Scholar 

  21. Courbage, M., Nekorkin, V.I., and Vdovin, L.V., Chaotic Oscillations in a Map-Based Model of Neural Activity, Chaos, 2007, vol. 17, no. 4, p. 043109.

  22. Zhusubaliyev, Zh.T., Avrutin, V., Rubanov, V.G., and Bushuev, D.A., Complex Dynamics of a Vibration Machine Caused by a Relay Feedback Control, Physica D, 2021, vol. 420, p. 32870.

    Article  MathSciNet  Google Scholar 

  23. Bi, Q.S., Chen, X.K., Kurths, J., and Zhang, Zh., Nonlinear Behaviors as Well as the Mechanism in a Piecewise-Linear Dynamical System with Two Time Scales, Nonlinear Dynamics, 2016, vol. 85, pp. 2233–2245.

    Article  MathSciNet  Google Scholar 

  24. Bi, Q.S. and Zhang, Zh., Bursting Phenomena as Well as the Bifurcation Mechanism in Controlled Lorenz Oscillator with Two Time Scales, Phys. Lett. A, 2011, vol. 375, pp. 1183–1190.

    Article  Google Scholar 

  25. Turaev, D.V. and Shilnikov, L.P., Blue Sky Catastrophes, Dokl. Math., 1995, no. 51, pp. 404–407.

  26. Avrutin, V., Gardini, L., Sushko, I., and Tramontana, F., Continuous and Discontinuous Piecewise-Smooth One-Dimensional Maps: Invariant Sets and Bifurcation Structures, New Jersey, London, Singapore, Hong Kong: World Scientific, 2019.

    Book  Google Scholar 

  27. Zhusubaliyev, Zh.T., Avrutin, V., Kucherov, A.S., Haroun, R., and El Aroudi, A., Period Adding with Symmetry Breaking/Recovering in a Power Inverter with Hysteresis Control, Physica D, 2023, vol. 444, p. 133600.

  28. Nordmark, A., Non-Periodic Motion Caused by Grazing Incidence in an Impact Oscillator, J. Sound Vibrat., 1991, vol. 145, no. 2, pp. 279–297.

    Article  Google Scholar 

  29. Chin, W., Ott, E., Nusse, H.E., and Grebogi, C., Grazing Bifurcations in Impact Oscillators, Physical Review E, 1994, vol. 50, no. 6. pp. 4427–4444.

    MathSciNet  Google Scholar 

  30. Di Bernardo, M., Feigin, M.I., Hogan, S.J., and Homer, M.E., Local Analysis of C-bifurcations in n-Dimensional Piecewise-Smooth Dynamical Systems, Chaos, Solitons and Fractals, 1999, vol. 19, no. 11, pp. 1881–1908.

    Google Scholar 

  31. Di Bernardo, M., Budd, C.J., Champneys, A.R., and Kowalczyk, P., Piecewise-Smooth Dynamical Systems: Theory and Applications, London: Springer-Verlag, 2008.

    Google Scholar 

  32. Keener, J.P., Chaotic Behavior in Piecewise Continuous Difference Equations, Trans. Am. Math. Soc., 1980, vol. 261, no. 2, pp. 589–604.

    Article  MathSciNet  Google Scholar 

  33. Kaneko, K., On the Period-Adding Phenomena at the Frequency Locking in a One-Dimensional Mapping, Prog. Theor. Phys., 1982, vol. 68, no. 2, pp. 669–672.

    Article  MathSciNet  Google Scholar 

  34. De Melo, W. and Van Strien, S., One-Dimensional Dynamics, New York: Springer, 1993.

  35. Dudkowski, D., Czolczynski, K., and Kapitaniak, T., Multistability and Synchronization: The CoExistence of Synchronous Patterns in Coupled Pendula, Mechanical Systems and Signal Processing, 2022, vol. 16, p. 108446.

  36. Zhen Su, Zh., Kurths, J., Liu, Y., and Yanchuk, S., Extreme Multistability in Symmetrically Coupled Clocks, Chaos, 2023, vol. 33, p. 083157.

  37. Kuznetsov, N., Mokaev, T., Ponomarenko, V., Seleznev, E., Stankevich, N., and Chua, L., Hidden Attractors in Chua Circuit: Mathematical Theory Meets Physical Experiments, Nonlinear Dynamics, 2023, vol. 111, pp. 5859–5887.

    Article  Google Scholar 

  38. Zhusubalyev, Zh.T. and Mosekilde, E., Multistability and Hidden Attractors in a Multilevel Dc/Dc Converter, Math. Comput. Simulat., 2015, vol. 109, pp. 32–45.

    Article  MathSciNet  Google Scholar 

Download references

Funding

Zh.T. Zhusubaliyev was supported by the Ministry of Education and Science of the Russian Federation within the scope of the “Implementation of the Strategic Academic Leadership, program Priority 20302” (1.73.23 II; 1.7.21/S-2, 1.7.21/4-24-7). U.A. Sopuev was supported by the Osh State University (grant nos. 14-22; 19-24). The work of D.A. Bushuev was supported within the framework of the Program “Priority-2030” using equipment of High Technology Center of the Belgorod State Technological University named after V.G. Shukhov.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zh. T. Zhusubaliyev, U. A. Sopuev or D. A. Bushuev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

This paper was recommended for publication by N. V. Kuznetsov, a member of the Editorial Board

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhusubaliyev, Z.T., Sopuev, U.A. & Bushuev, D.A. On Forced Oscillations in a Relay System with Hysteresis. Autom Remote Control 85, 377–386 (2024). https://doi.org/10.1134/S0005117924040088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117924040088

Keywords:

Navigation