Skip to main content
Log in

Composite Observer of a Linear Time-Varying Singularly Perturbed System with Quasidifferentiable Coefficients

  • LINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

For a linear time-varying singularly perturbed system with a small parameter μ for a part of derivatives and quasi-differentiable coefficients, existence conditions are established and μ-asymptotic composite full- and reduced-order observers are constructed. The error in estimating a state with an arbitrary predetermined exponential decay rate converges to an infinitesimal value of the same order of smallness as the small parameter. The observer gain vector are expressed in terms of the gain vectors of subsystems of smaller dimension than the original one and independent of the small parameter, and the parameters of the original system are subject to weaker requirements than those previously known. A constructive algorithm for calculating the gain vector of a composite observer is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Kvakernaak, H. and Sivan, R., Lineinye optimal’nye sistemy upravleniya (Linear Optimal Control Systems), Moscow: Mir, 1977.

  2. O'Reilly, J., Observers for Linear Systems, London: Academic Press, 1983.

    Google Scholar 

  3. Krasnova, S.A., Utkin, V., and Mikheev, Y.V., Cascade Design of State Observers, Autom. Remote Control, 2001, vol. 62, no. 2, pp. 207–226.

    Article  MathSciNet  Google Scholar 

  4. Korovin, S.K. and Fomichev, V.V., Nablyudateli sostoyaniya dlya lineinykh sistem s neopredelennost’yu (State Observers for Linear Systems with Uncertainty), Moscow: FIZMATLIT, 2007.

    Google Scholar 

  5. Astrovskii, A.I. and Gaishun, I.V., State Estimation for Linear Time-Varying Observation Systems, Diff. Equat., 2019, vol. 55, no. 3, pp. 363–373.

    Article  MathSciNet  Google Scholar 

  6. Quoc, D. and Bobtsov, A., An Adaptive State Observer for Linear Time-varying Systems with Inaccurate Parameters, Autom. Remote Control, 2020, vol. 81, no. 12, pp. 2220–2229.

    Article  MathSciNet  Google Scholar 

  7. Luenberger, D.G., Observing the State of a Linear System, IEEE Transactions on Military Electronics, 1964, vol. 8., no. 2, pp. 74–80.

    Article  Google Scholar 

  8. Luenberger, D.G., An Introduction to Observers, IEEE Trans. Automat. Control, 1971, vol. Ac-16, pp. 596–602.

  9. Vasilyeva, A.B. and Dmitriev, M.G., Singular Perturbations in Optimal Control Problems, Itogi Nauki i Tekhniki VINITI. Mat. Analiz, 1982, vol. 20, pp. 3–77.

    Google Scholar 

  10. Naidu, D.S., Singular Perturbations and Time Scales in Control Theory and Applications: An Overview, Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms, 2002, no. 9, pp 233–278.

  11. Dmitriev, M.G. and Kurina, G.A., Singular Perturbations in Control Problems, Autom. Remote Control, 2006, vol. 67, no. 1, pp. 1–43.

    Article  MathSciNet  Google Scholar 

  12. Zhang, Y., Naidu, D.S., Cai, C., and Zou, Y., Singular Perturbations and Time Scales in Control Theory and Applications: An overview 2002–2012, Int. J. Inf. Sys. Sci., 2014, no. 9, pp. 1–36.

  13. Kurina, G.A. and Kalashnikova, M.A., Singularly Perturbed Problems with Multi-Tempo Fast Variables, AutomRemote Control, 2022, vol. 83, no. 11, pp. 1679–1723.

    Article  MathSciNet  Google Scholar 

  14. O Reilly, J., Full-Order Observers for a Class of Singularly Perturbed Linear Time-Varying Systems, Int. J. Control, 1979, vol. 30, no. 5, pp. 745–756.

    Article  MathSciNet  Google Scholar 

  15. Yousfi, B., Raissi, T., Amairi, M., and Aoun, M., Interval Observers Design for Singularly Perturbed Systems, Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, CA, USA, 2014, pp. 1637–1642.

  16. Locatelli, A., State Observation and Output Feedback Stabilization of Linear Singularly Perturbable Systems, IFAC Proceedings Volumes, 1976, vol. 9, no. 3, pp. 335–343.

  17. Porter, B., Singular Perturbation Methods in the Design of Full-Order Observers for Multivariable Linear Systems, Int. J. Control, 1977, vol. 26, no. 4, pp. 589–594.

    Article  MathSciNet  Google Scholar 

  18. Yoo, H. and Gajic, Z., New Designs of Reduced-Order Observer-Based Controllers for Singularly Perturbed Linear Systems, Math. Probl. Eng., 2017, vol. 2017, pp. 1–14.

    Article  MathSciNet  Google Scholar 

  19. Duan, Z. and Kravaris, C., Reduced-Order Nonlinear Observer Design for Two-time-scale Systems, IFAC-PapersOnLine, 2020, vol. 53, no. 2, pp. 5922–5927.

    Article  Google Scholar 

  20. Deghat, M., Nesic, D., Teel, A.R., and Manzie, C., Observing the Slow States of General Singularly Perturbed Systems, Proc. 59th IEEE Conf. Decision and Control (CDC), Jeju, Korea (South), 2020, pp. 4206–4211.

  21. Cuevas, L., Nesic, D., and Manzie, C., Robustness Analysis of Nonlinear Observers for the Slow Variables of Singularly Perturbed Systems, Int. J. Robust Nonlinear Control, 2020, vol. 30, no. 14, pp. 5628–5656.

    Article  MathSciNet  Google Scholar 

  22. Kalenova, V.I. and Morozov, V.M., Lineinye nestatsionarnye sistemy i ikh prilozheniya k zadacham mekhaniki (Linear Nonstationary Systems and their Applications to Problems of Mechanics), Moscow: FIZMATLIT, 2010.

    Google Scholar 

  23. Shin, D., On Quasi-Differential Operators in Hilbert Space, Dokl. AN SSSR, 1938, vol. 18, no. 5, pp. 523–526.

    Google Scholar 

  24. Astrovskii, A.I. and Gaishun, I.V., Lineinye sistemy s kvazidifferentsiruemymi koeffitsientami: upravlyaemost’ i nablyudaemost’ dvizhenii (Linear Systems with Quasi-Differentiable Coefficients: Controllability and Observability of Movements), Minsk: Belarus. Navuka, 2013.

    Google Scholar 

  25. Kopeikina, T.B. and Tsekhan, O.B., On the Theory of Observability of Linear Singularly Perturbed Systems, Vesci NAN Belarusi. Ser. Fiz.-Mat. Navuk, 1999, no. 3, pp. 22–27.

  26. Tsekhan, O.B., Conditions of Complete Observability of Linear time-invariant Singularly Perturbed System of the Second Order with Delay, Vesn. GrDU imya Ya. Kupaly, Ser. 2: Matematyka. Fizika. Infarmatyka, vylichal’naya tekhnika i kiravanne, 2014, no. 1 (170), pp. 53–64.

  27. Tsekhan, O.B., Conditions for Pointwise Controllability and Pointwise Observability of Linear Time-Invariant Singularly Perturbed Systems with Delay, Trudy Instituta Matematiki NAN Belarusi, 2021, vol. 29, no. 1–2, pp. 138–148.

    MathSciNet  Google Scholar 

  28. Tsekhan, O. and Pawluszewicz, E., Observability of Singularly Perturbed Linear Time-Varying Systems on Time Scales, Proc. 26th Int. Conf. Methods and Models in Automation and Robotics (MMAR), 2022, pp. 116–121.

  29. Tsekhan, O.B., Robust Sufficient Conditions for Uniform Observability of a Linear Time-Varying Singularly Perturbed Systems, Differentsial’nye Uravneniya i Matematicheskaya Fizika, Itogi Nauki i Tekhn. Ser. Sovrem. Mat. i Ee Pril. Temat. Obz., VINITI RAN, Moscow, 2023. vol. 226, pp. 150–164.

    MathSciNet  Google Scholar 

  30. Tsekhan, O., Robust Sufficient conditions for the Observability of a Linear Time-Invariant Singularly Perturbed System with Delay, Commun. Optim. Theory, 2023, pp. 1–10.

    Google Scholar 

  31. Tsekhan, O.B., Quasidifferentiability and Uniform Observability of Linear Time-Varying Singularly Perturbed Systems, Diff. Equat., 2023, vol. 59, no. 8, pp. 1130–1146.

    Article  MathSciNet  Google Scholar 

  32. Kokotovic, P.V., Khalil, H.K., and O Reilly, J., Singular Perturbations Methods in Control: Analysis and Design, New York: Academic Press, 1999.

    Book  Google Scholar 

  33. Chang, K., Singular Perturbations of a General Boundary Value Problem, SIAM J. Math. Anal., 1972. vol. 3, no. 3, pp. 520–526.

    Article  MathSciNet  Google Scholar 

  34. Wolovich, W.A., On State Estimation of Observable Systems, Preprint NASA Electronics Research Center. Cambridge, 1968, no. 6, pp. 210–220.

  35. Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical System Theory, New York: McGraw-Hill, 1969.

    Google Scholar 

  36. Astrovskii, A.I., Nablyudaemost’ lineinykh nestatsionarnykh sistem (Observability of Linear Time-Varying Systems), Minsk: MIU, 2007.

    Google Scholar 

  37. Gaishun, I.V., Vvedenie v teoriyu lineinyh nestatsionarnykh sistem (Introduction to the Theory of Linear Time-Varying Systems), Minsk: Institut matematiki NAN Belarusi, 1999.

Download references

ACKNOWLEDGMENTS

I thank Professor A.I. Astrovskii for valuable advice and guidance expressed during the discussion of the material of this work.

Funding

This work was supported in part by the Ministry of Education of the Republic of Belarus, State Program of Scientific Research of the Republic of Belarus for 2021-2025 (project “Convergence 1.2.04”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Tsekhan.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

This paper was recommended for publication by A.A. Bobtsov, a member of the Editorial Board

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Proof of Theorem 1. It follows from (i) that the DS (As, cs) (8) is uniformly observable and for it there exists a ρ-exponential observer. Under assumption (iii), there exists a μ0ρ-exponential observer for the t‑family of fast subsystems (9).

We will look for a full-order observer for the LTVSPS (5) in the form of the system (7). We will look for the gain vector K(t, μ) in the form

$$K(t,\mu ) = \operatorname{diag} \left\{ {{{E}_{{{{n}_{1}}}}},\,\,\frac{1}{\mu }{{E}_{{{{n}_{2}}}}}} \right\}\left( \begin{gathered} {{k}_{1}}(t) \\ {{k}_{2}}(t) \\ \end{gathered} \right),\;\;{{k}_{1}}(t) \in {{\mathbb{R}}^{{{{n}_{1}}}}},\;\;{{k}_{2}}(t) \in {{\mathbb{R}}^{{{{n}_{2}}}}},$$

where k1(t), k2(t) are not yet defined. Then the observer (7) will take the form (22), and the error dynamics equations \({{\varepsilon }_{x}}(t,\mu )\) = x(t, μ) – wx(t, μ), εy(t, μ) = y(t, μ) – wy(t, μ) for the observer (22) will look like:

$$\begin{gathered} {{{\dot {\varepsilon }}}_{x}}(t) = {{{\tilde {A}}}_{1}}(t){{\varepsilon }_{x}}(t) + {{{\tilde {A}}}_{2}}(t){{\varepsilon }_{y}}(t),\quad {{\varepsilon }_{x}} \in {{\mathbb{R}}^{{{{n}_{1}}}}}, \\ \mu {{{\dot {\varepsilon }}}_{y}}(t) = {{{\tilde {A}}}_{3}}(t){{\varepsilon }_{x}}(t) + {{{\tilde {A}}}_{4}}(t){{\varepsilon }_{y}}(t),\quad {{\varepsilon }_{y}} \in {{\mathbb{R}}^{{{{n}_{2}}}}},\quad t > {{t}_{0}}. \\ \end{gathered} $$
(A.1)

Since the observation error dynamics system (A.1) has the form of the LTVSPS (1)–(2), then when the assumptions (v), (vi) of Theorem 1 for the error system (A.1) the conditions of Theorem 3.1 from ([32], p. 212) and, therefore, there is a decoupling Lyapunov transformation of the form (3.4) from ([32], p. 210) with continuously differentiable matrices \(\tilde {L}\)(t, μ), \(\tilde {H}\)(t, μ) bounded on T, which satisfy the following system (in order not to clutter the notation, we will omit the dependence of functions on the argument t in some places):

$${{\tilde {A}}_{3}} - {{\tilde {A}}_{4}}\tilde {L}(\mu ) + \mu \tilde {L}(\mu )\left( {{{{\tilde {A}}}_{1}} - {{{\tilde {A}}}_{2}}\tilde {L}(\mu )} \right) = \mu \dot {\tilde {L}}(\mu ),$$
(A.2)
$$\mu \left[ {{{{\tilde {A}}}_{1}} - {{{\tilde {A}}}_{2}}\tilde {L}(\mu )} \right]\tilde {H}(\mu ) - \tilde {H}(\mu )\left[ {{{{\tilde {A}}}_{4}} + \mu \tilde {L}(\mu ){{{\tilde {A}}}_{2}}} \right] + {{\tilde {A}}_{2}} = \mu \dot {\tilde {H}}(\mu ).$$
(A.3)

From (A.2), (A.3) taking into account (i), (vi) we have the approximation:

$$\begin{gathered} \tilde {L}(t,\,\,\mu ) = A_{4}^{{ - 1}}(t){{k}_{2}}(t){{c}_{2}}(t)\tilde {L}(t,\,\,\mu ){{{\tilde {A}}}_{3}}(t) + O(\mu ), \\ \tilde {L}(t,\,\,\mu ) = \tilde {A}_{4}^{{ - 1}}(t){{{\tilde {A}}}_{3}}(t) + O(\mu ), \\ \tilde {H}(t,\,\,\mu ) = \left( {\tilde {H}(t,\,\,\mu ){{k}_{2}}(t){{c}_{2}}(t) + {{{\tilde {A}}}_{2}}(t)} \right)A_{4}^{{ - 1}}(t) + O(\mu ), \\ \tilde {H}(t,\,\,\mu ) = {{{\tilde {A}}}_{2}}(t)\tilde {A}_{4}^{{ - 1}}(t) + O(\mu ). \\ \end{gathered} $$
(A.4)

As a result of the decoupling transformation, the error dynamics system (A.1) will take the form of a system separated by time scales:

$$\begin{gathered} {{{\dot {\varepsilon }}}_{\xi }}(t) = {{A}_{\xi }}(t,\,\,\mu ){{\varepsilon }_{\xi }}(t),\quad {{\varepsilon }_{\xi }} \in {{\mathbb{R}}^{{{{n}_{1}}}}}, \\ \mu {{{\dot {\varepsilon }}}_{\eta }}(t) = {{A}_{\eta }}(t,\,\,\mu ){{\varepsilon }_{\eta }}(t),\quad {{\varepsilon }_{\eta }} \in {{\mathbb{R}}^{{{{n}_{2}}}}},\quad t > {{t}_{0}}, \\ \end{gathered} $$
(A.5)

where

$${{A}_{\xi }}(t,\,\,\mu ) = {{\tilde {A}}_{1}}(t) - {{\tilde {A}}_{2}}(t)\tilde {L}(t,\mu ),\quad {{A}_{\eta }}(t,\,\,\mu ) = {{\tilde {A}}_{4}}(t) + \mu \tilde {L}(t,\,\,\mu ){{\tilde {A}}_{2}}(t).$$
(A.6)

Moreover, according to Statement 1, the solutions (A.1) and (A.5) satisfy the following equalities:

$$\begin{gathered} {{\varepsilon }_{\xi }}(t) = {{\varepsilon }_{x}}(t) + O(\mu ),\;{{\varepsilon }_{x}}(t) = {{\varepsilon }_{\xi }}(t) + O(\mu ), \\ {{\varepsilon }_{\eta }}(t) = \tilde {A}_{4}^{{ - 1}}(t){{{\tilde {A}}}_{3}}(t){{\varepsilon }_{x}}(t) + {{\varepsilon }_{y}}(\tau ) + O(\mu ), \\ {{\varepsilon }_{y}}(t) = - \tilde {A}_{4}^{{ - 1}}(t){{{\tilde {A}}}_{3}}(t){{\varepsilon }_{\xi }}(t) + {{\varepsilon }_{\eta }}(\tau ) + O(\mu ). \\ \end{gathered} $$
(A.7)

Let’s put

$${{k}_{2}}(t) = {{k}_{f}}(t)$$
(A.8)

and we will look for k1(t) in the form:

$${{k}_{1}}(t) = {{k}_{s}}(t) + {{\tilde {H}}^{0}}(t){{k}_{2}}(t),\quad {{\tilde {H}}^{0}}(t) = ({{A}_{2}}(t) - {{k}_{s}}(t){{c}_{2}}(t))A_{4}^{{ - 1}}(t).$$
(A.9)

Let’s substitute (A.9), (A.8) into (A.6) and perform sequential transformations:

$${{A}_{\xi }}(\mu )\mathop = \limits^{({\text{A}}{\text{.9}})} {{A}_{1}} - \left( {{{k}_{s}} + {{{\tilde {H}}}^{0}}{{k}_{2}}} \right){{c}_{1}} - \left( {{{A}_{2}} - \left( {{{k}_{s}} + {{{\tilde {H}}}^{0}}{{k}_{2}}} \right){{c}_{2}}} \right)\tilde {L}(\mu )$$
$$ = \left( {{{A}_{1}} - {{A}_{2}}\tilde {L}(\mu )} \right) + \left( {{{k}_{s}} + {{{\tilde {H}}}^{0}}{{k}_{2}}} \right)\left( {{{c}_{1}} - {{c}_{2}}\tilde {L}(\mu )} \right)$$
$$\mathop = \limits^{{\text{(A}}{\text{.4)}}} {{A}_{1}} - {{A}_{2}}A_{4}^{{ - 1}}\left( {{{k}_{2}}{{c}_{2}}\tilde {L}(\mu ) + {{A}_{3}} - {{k}_{2}}{{c}_{1}}} \right)$$
$$ - \;\left( {{{k}_{s}} + {{{\tilde {H}}}^{0}}{{k}_{2}}} \right)\left[ {{{c}_{1}} - {{c}_{2}}A_{4}^{{ - 1}}\left( {{{k}_{2}}{{c}_{2}}\tilde {L}(\mu ) + {{A}_{3}} - {{k}_{2}}{{c}_{1}}} \right)} \right] + O(\mu )$$
$$\mathop = \limits^{(As,cs)} {{A}_{s}} - {{k}_{s}}{{c}_{s}} + \left( { - {{A}_{2}} + {{k}_{s}}{{c}_{2}} + {{{\tilde {H}}}^{0}}{{k}_{2}}{{c}_{2}}} \right)A_{4}^{{ - 1}}{{k}_{2}}{{c}_{2}}\tilde {L}(\mu )$$
$$ + \;\left( {{{A}_{2}} - {{k}_{s}}{{c}_{2}} - {{{\tilde {H}}}^{0}}{{A}_{4}}} \right)A_{4}^{{ - 1}}{{k}_{2}}{{c}_{1}} + {{\tilde {H}}^{0}}{{k}_{2}}{{c}_{2}}A_{4}^{{ - 1}}({{A}_{3}} - {{k}_{2}}{{c}_{1}}) + O(\mu )$$
$$\mathop = \limits^{{\text{(A}}{\text{.9)}}} {{A}_{s}} - {{k}_{s}}{{c}_{s}} + {{\tilde {H}}^{0}}{{k}_{2}}{{c}_{2}}A_{4}^{{ - 1}}\left( {{{A}_{4}}\tilde {L}(\mu ) + {{k}_{2}}{{c}_{2}}\tilde {L}(\mu ) - {{k}_{2}}{{c}_{1}} + {{A}_{3}}} \right) + O(\mu )$$
$$\mathop = \limits^{{\text{(A}}{\text{.4)}}} {{A}_{s}} - {{k}_{s}}{{c}_{s}} + O(\mu ).$$

Thus, for Aξ(t, μ) with k1(t), k2(t) of the form (A.9), (A.8) the approximation is valid:

$${{A}_{\xi }}(t,\,\,\mu ) = {{A}_{s}}(t) - {{k}_{s}}(t){{c}_{s}}(t) + O(\mu ).$$
(A.10)

Further, from (A.6) it follows

$${{A}_{\eta }}(t,\,\,\mu ) = ({{A}_{4}}(t) - {{k}_{2}}(t){{c}_{2}}(t)) + O(\mu ).$$
(A.11)

Thus, combining (A.10) and (A.11) from (A.5) we get:

$$\begin{gathered} {{{\dot {\varepsilon }}}_{\xi }}(t) = ({{A}_{s}}(t) - {{k}_{s}}(t){{c}_{s}}(t) + O(\mu )){{\varepsilon }_{\xi }}(t), \\ \mu {{{\dot {\varepsilon }}}_{\eta }}(t) = ({{A}_{4}}(t) - {{k}_{2}}(t){{c}_{2}}(t) + O(\mu )){{\varepsilon }_{\eta }}(t),\quad t > {{t}_{0}}. \\ \end{gathered} $$
(A.12)

Since in (A.12) ks(t), k2(t) are the gain vectors for the observer (14) of the DS (8) and the observer (15) of the t-family of fast subsystems, then the parameters of the error system (A.12) are O(μ)-close to the parameters of the error dynamics system for the DS and the t-family of fast subsystems observers with gain vectors ks and kf, respectively. Therefore, due to the continuous dependence of the solution (A.12) on additive perturbations of the system coefficients, the following estimates are valid: ||εξ(t)|| \(\leqslant \) \({{c}_{{{{\rho }_{s}}}}}\exp \)(–ρ(t\(\bar {t}\))) + O(μ), t \( \geqslant \) \(\bar {t}\), ||εη(t)|| \(\leqslant \) \({{c}_{{{{\rho }_{f}}}}}\exp \left( { - {{\mu }^{0}}\rho \frac{{(t - \bar {t})}}{\mu }} \right)\) + O(μ), t \( \geqslant \) \(\bar {t}\), whence, taking into account (A.7), it follows that the estimates are fair

$$\begin{gathered} \left\| {{{\varepsilon }_{x}}(t)} \right\|\;\leqslant \;{{c}_{{{{\rho }_{s}}}}}\exp ( - \rho (t - \bar {t})) + O(\mu ),\quad t\; \geqslant \;\bar {t}, \hfill \\ \left\| {{{\varepsilon }_{y}}(t)} \right\|\;\leqslant \;{{c}_{{{{\rho }_{s}}}}}\left\| {\tilde {A}_{4}^{{ - 1}}(t){{{\tilde {A}}}_{3}}(t)} \right\|\exp ( - \rho (t - \bar {t})) + {{c}_{{{{\rho }_{f}}}}}\exp \left( { - {{\mu }^{0}}\rho \left( {\frac{{t - \bar {t}}}{\mu }} \right)} \right) + O(\mu ),\quad t\; \geqslant \;\bar {t}. \hfill \\ \end{gathered} $$

Let cρ = \(\max \left\{ {{{c}_{{{{\rho }_{s}}}}},{{c}_{{{{\rho }_{f}}}}},{{c}_{{{{\rho }_{s}}}}}\left\| {\tilde {A}_{4}^{{ - 1}}(t){{{\tilde {A}}}_{3}}(t)} \right\|} \right\}\). For μ ∈ (0, μ0] the estimate \(\exp \left( { - {{\mu }^{0}}\rho \left( {\frac{{t - \bar {t}}}{\mu }} \right)} \right)\) < exp(–ρ(t\(\bar {t}\))), t \( \geqslant \) \(\bar {t}\), which implies the validity of the estimates ||ε(t, μ)|| \(\leqslant \) \({{c}_{\rho }}\exp \)(–ρ(t\(\bar {t}\))) + O(μ), t \( \geqslant \) \(\bar {t}\), and, according to the Definition 7 and from the coincidence of (A.9) and (21) imply the truth of Theorem 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsekhan, O.B. Composite Observer of a Linear Time-Varying Singularly Perturbed System with Quasidifferentiable Coefficients. Autom Remote Control 85, 341–356 (2024). https://doi.org/10.1134/S0005117924040064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117924040064

Keywords:

Navigation