Skip to main content
Log in

On the External Estimation of Reachable and Null-Controllable Limit Sets for Linear Discrete-Time Systems with a Summary Constraint on the Scalar Control

  • LINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The problem of constructing reachable and null-controllable sets for stationary linear discrete-time systems with a summary constraint on the scalar control is considered. For the case of quadratic constraints and a diagonalizable matrix of the system, these sets are built explicitly in the form of ellipsoids. In the general case, the limit reachable and null-controllable sets are represented as fixed points of a contraction mapping in the metric space of compact sets. On the basis of the method of simple iteration, a convergent procedure for constructing their external estimates with an indication of the a priori approximation error is proposed. Examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Propoi, A.I., Elementy teorii optimal’nykh diskretnykh protsessov (Elements of the Theory of Optimal Discrete Processes), Moscow: Nauka, 1973.

    Google Scholar 

  2. Ibragimov, D.N. and Sirotin, A.N., On the Problem of Optimal Speed for the Discrete Linear System with Bounded Scalar Control on the Basis of 0-controllability Sets, Autom. Remote Control, 2015, vol. 76, no. 9, pp. 1517–1540. https://doi.org/10.1134/S0005117919030019

    Article  MathSciNet  Google Scholar 

  3. Ibragimov, D.N., On the Optimal Speed Problem for the Class of Linear Autonomous Infinite-Dimensional Discrete-Time Systems with Bounded Control and Degenerate Operator, Autom. Remote Control, 2019, vol. 80, no. 3, pp. 393–412. https://doi.org/10.1134/S0005117919030019

    Article  MathSciNet  Google Scholar 

  4. Zaitseva, M.V. and Tochilin P.A., Constructing Estimates of Reachability Sets in Crowd Flows Modeling, Computational Mathematics and Mathematical Physics, 2023, vol. 63, no. 8, pp. 1527–1539. https://doi.org/10.1134/S0965542523070163

    Article  MathSciNet  Google Scholar 

  5. Tochilin, P.A., On the Construction of Nonconvex Approximations to Reach Sets of Piecewise Linear Systems, Differential Equations, 2015, vol. 51, no. 11, pp. 1499–1511. https://doi.org/10.1134/S0012266115110117

    Article  MathSciNet  Google Scholar 

  6. Kuntsevich, V.M. and Kurzhanski, A.B., Attainability Domains for Linear and Some Classes of Nonlinear Discrete Systems and Their Control, J. Autom. Inform. Sci., 2010, vol. 42, no. 1, pp. 1–18. https://doi.org/10.1615/JAutomatInfScien.v42.i1.10

    Article  Google Scholar 

  7. Sirotin, A.N. and Formal’skii, A.M., Reachability and Controllability of Discrete-Time Systems under Control Actions Bounded in Magnitude and Norm, Autom. Remote Control, 2003, vol. 64, no. 12, pp. 1844–1857. https://doi.org/10.1023/B:AURC.0000008423.93495.be

    Article  MathSciNet  Google Scholar 

  8. Colonius, F., Cossich, J.A.N., and Santana, A.J., Controllability Properties and Invariance Pressure for Linear Discrete-Time Systems, J. Dynam. Different. Equat., 2022, vol. 34, pp. 5–22. https://doi.org/10.1007/s10884-021-09966-4

    Article  MathSciNet  Google Scholar 

  9. Darup, M.S. and Monnigmann, M., On General Relations between Null-Controllable and Controlled Invariant Sets for Linear Constrained Systems, 53rd IEEE Conference on Decision and Control, Los Angeles, 2014, pp. 6323–6328. https://doi.org/10.1109/CDC.2014.7040380

  10. Ge, S.S., Zhendong, S., and Lee, T.H., Reachability and Controllability of Switched Linear Siscrete-Time Systems, IEEE Transact. Autom. Control, 2001, vol. 46, no. 9, pp. 1437–1441. https://doi.org/10.1109/9.948473

    Article  Google Scholar 

  11. Heemels, W.P.M.H. and Camlibel, M.K., Null Controllability of Discrete-Time Linear Systems with Input and State Constraints, Proc. 47th IEEE Conf. Decis. Control., 2008, pp. 3487–3492. https://doi.org/10.1109/CDC.2008.4739333

  12. Kaba, M.D. and Camlibel, M.K., A Spectral Characterization of Controllability for Linear Discrete-Time Systems with Conic Constraints, SIAM J. Control Optim., 2015, vol. 53, no. 4, pp. 2350–2372. https://doi.org/10.1137/140960967

    Article  MathSciNet  Google Scholar 

  13. Benvenuti, L. and Farina, L., The Geometry of the Reachability Set for Linear Discrete-Time Systems with Positive Controls, SIAM J. Matrix Anal. Appl., 2006, vol. 28, no. 2, pp. 306–325. https://doi.org/10.1137/040612531

    Article  MathSciNet  Google Scholar 

  14. Fucheng, L., Mengyuan, S., and Usman, Optimal Preview Control for Linear Discrete-Time Periodic Systems, Mathematical Problems in Engineering, 2019, pp. 1–11. https://doi.org/10.1155/2019/8434293

  15. Berendakova, A.V. and Ibragimov, D.N., About the Method for Constructing External Estimates of the Limit 0-Controllability Set for the Linear Discrete-Time System with Bounded Control, Autom. Remote Control, 2023, vol. 84, no. 2, pp. 97–120. https://doi.org/10.25728/arcRAS.2023.95.43.001

    Article  MathSciNet  Google Scholar 

  16. Kostousova, E.K., On External Polyhedral Estimation of the Reachability Sets in the Extended Space for Linear Multistep Systems with Integral Control Constraints, Vychisl. Tekhnol., 2004, vol. 9, no. 4, pp. 54–72.

    Google Scholar 

  17. Gayek, J.E. and Fisher, M.E., Approximating Reachable Sets for n-Dimensional Linear Discrete Systems, IMA J. Math. Control Inform., 1987, vol. 4, no. 2, pp. 149–160. https://doi.org/10.1093/imamci/4.2.149

    Article  MathSciNet  Google Scholar 

  18. Ibragimov, D.N., Osokin, A.V., Sirotin, A.N., and Sypalo, K.I., On the Properties of the Limit Control Sets for a Class of Unstable Linear Systems with Discrete Time and l 1-Restrictions, J. Comput. Syst. Sci. Int., 2022, vol. 61, no. 4, pp. 467–484. https://doi.org/10.1134/S1064230722040104

    Article  MathSciNet  Google Scholar 

  19. Ibragimov, D.N. and Sirotin, A.N., On Some Properties of Sets of Bounded Controllability for Stationary Linear Discrete Systems with Total Control Constraints, J. Comput. Syst. Sci. Int., 2023, vol. 62, no. 6, pp. 3–32. https://doi.org/10.1134/S1064230723050088

    Article  MathSciNet  Google Scholar 

  20. Barr, A.H., Superquadrics and Angle-Preserving Transformations, IEEE-CGA, 1981, vol. 1, no. 1, pp. 11–23. https://doi.org/10.1109/MCG.1981.1673799

    Article  Google Scholar 

  21. Tobler, W.R., The Hyperelliptical and Other New Pseudo Cylindrical Equal Area Map Projections, J. Geophys. Research, 1973, vol. 78, no. 11, pp. 1753–1759. https://doi.org/10.1029/JB078i011p01753

    Article  Google Scholar 

  22. Rockafellar, R., Vypuklyi analiz (Convex Analysis), Moscow: Mir, 1973.

  23. Polovinkin, E.S. and Balashov, M.V., Elementy vypuklogo i sil’no vypuklogo analiza (Elements of Convex and Strongly Convex Analysis), Moscow: Fizmatlit, 2004.

    Google Scholar 

  24. Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511804441

    Book  Google Scholar 

  25. Kolmogorov, A.N. and Fomin, S.V., Elementy teorii funktsii i funktsional’nogo analiza (Elements of the Theory of Functions and Functional Analysis), Moscow: Fizmatlit, 2012.

    Google Scholar 

  26. Dunford, N. and Schwartz, J.T., Linear Operators, Part 2: Spectral Theory, Self Adjoint Operators in Hilbert  Space, New York: Interscience Publishers, 1963. Translated under the title Lineinye operatory. T. 2. Spektral’naya teoriya. Samosopryazhennye operatory v gil’bertovom prostranstve, Moscow: Mir, 1966.

  27. Kronover, R.M., Fraktaly i khaos v dinamicheskikh sistemakh (Fractals and Chaos in Dynamical Systems), Moscow: Postmarket, 2000.

    Google Scholar 

  28. Horn, R. and Johnson, C., Matrichnyi analiz (Matrix Analysis), Moscow: Mir, 1989.

  29. Alekseev, V.M., Tihomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: Nauka, 1979.

    Google Scholar 

Download references

Funding

This work was supported in part by the Russian Science Foundation, project no. 23-21-00293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Ibragimov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

This paper was recommended for publication by M. V. Khlebnikov, a member of the Editorial Board

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Proof of Lemma 1. By the definition of the Minkowski functional, for any x\({{\mathbb{L}}_{2}}\) the following relations are true:

$$\begin{gathered} \mu (x,B\mathcal{U}) = \inf \{ t > 0{\kern 1pt} :x \in tB\mathcal{U}\} = \inf \{ t > 0{\kern 1pt} :\exists u \in t\mathcal{U},\;x = Bu\} \\ = \inf \{ t > 0{\kern 1pt} :\exists u \in {{B}^{{ - 1}}}(\{ x\} ),\;u \in t\mathcal{U}\} = \mathop {\inf }\limits_{u \in {{B}^{{ - 1}}}(\{ x\} )} \inf \{ t > 0{\kern 1pt} :u \in t\mathcal{U}\} = \mathop {\inf }\limits_{u \in {{B}^{{ - 1}}}(\{ x\} )} \mu (u,\mathcal{U}). \\ \end{gathered} $$

Lemma 1 is proven.

Proof of Lemma 2. Since, due to the Riesz theorem, the operator B is linear and bounded, then according to Lemma 1

$${{(\mu (x,B{{\mathcal{E}}_{p}}(\infty )))}^{p}} = {{\left( {\mathop {\inf }\limits_{u \in {{B}^{{ - 1}}}(\{ x\} )} \mu (u,{{\mathcal{E}}_{p}}(\infty ))} \right)}^{p}} = \mathop {\inf }\limits_{\substack{ Bu = x \\ u \in {{l}_{p}} }} \sum\limits_{k = 1}^\infty {{{{\left| {{{u}_{k}}} \right|}}^{p}}.} $$
(A.1)

To solve the optimization problem (A.1) we will use the Lagrange multiplier method for infinite-dimensional spaces [29]. The Lagrange function for λ ∈ \({{\mathbb{R}}^{n}}\) has the following form

$$L(u,\lambda ) = \sum\limits_{k = 1}^\infty {{{{\left| {{{u}_{k}}} \right|}}^{p}}} + {{\lambda }^{{\text{T}}}}(x - Bu).$$

Then the search for a minimum in the problem (A.1) is reduced to solving the system of equations

$$\left\{ \begin{gathered} \frac{{\partial L}}{{\partial {{u}_{k}}}} = 0,\;k \in \mathbb{N}, \hfill \\ Bu = x, \hfill \\ \end{gathered} \right.\quad \left\{ \begin{gathered} p{{I}_{p}}(u) - B{\kern 1pt} ^*{\kern 1pt} \lambda = 0, \hfill \\ Bu = x, \hfill \\ \end{gathered} \right.\quad \left\{ \begin{gathered} u = I_{p}^{{ - 1}}\left( {\frac{1}{p}B{\kern 1pt} ^*{\kern 1pt} \lambda } \right) = {{I}_{q}}\left( {\frac{1}{p}B{\kern 1pt} ^*{\kern 1pt} \lambda } \right), \hfill \\ Bu = x. \hfill \\ \end{gathered} \right.$$

Hence, taking into account (A.1) and the identity \(\sum\limits_{k = 1}^\infty {{{{\left| {{{u}_{k}}} \right|}}^{p}}} \) = (u, Ip(u)) it follows that

$$(\mu {{(x,B{{\mathcal{E}}_{p}}(\infty ))}^{p}} = \left( {{{I}_{q}}\left( {\frac{1}{p}B{\kern 1pt} ^*{\kern 1pt} \lambda } \right),\,\,{{I}_{p}}\left( {{{I}_{q}}\left( {\frac{1}{p}B{\kern 1pt} ^*{\kern 1pt} \lambda } \right)} \right)} \right) = \left( {{{I}_{q}}\left( {\frac{1}{p}B{\kern 1pt} ^*{\kern 1pt} \lambda } \right),\,\,\frac{1}{p}B{\kern 1pt} ^*{\kern 1pt} \lambda } \right) = \left\| {\frac{1}{p}B{\kern 1pt} ^*{\kern 1pt} \lambda } \right\|_{{{{l}_{q}}}}^{q},$$
$$B{{I}_{q}}\left( {\frac{1}{p}B{\kern 1pt} ^*{\kern 1pt} \lambda } \right) = x.$$

Redesignating \(\frac{1}{p}\lambda \) by λ, we finally obtain

$$\mu (x,B{{\mathcal{E}}_{p}}(\infty )) = \left\| {B{\kern 1pt} ^*{\kern 1pt} \lambda } \right\|_{{{{l}_{q}}}}^{{\frac{q}{p}}} = \left\| {B{\kern 1pt} ^*{\kern 1pt} \lambda } \right\|_{{{{l}_{q}}}}^{{q - 1}},$$

where λ ∈ \({{\mathbb{R}}^{n}}\) is determined from (10).

Lemma 2 is proven.

Proof of Corollary 1. By definition, the operator I2 is identical. Then the condition (10) take the form

$$BB{\kern 1pt} ^*{\kern 1pt} \lambda = x.$$

Since B is surjective, the operator BB* : \({{\mathbb{R}}^{n}} \to {{\mathbb{R}}^{n}}\) and the matrix generating it are invertible, which leads to the relation

$$\lambda = {{(BB^*)}^{{ - 1}}}x.$$

Taking into account Lemma 2 we obtain

$$\mu (x,B{{\mathcal{E}}_{2}}(\infty )) = {{\left\| {B{\kern 1pt} ^*{\kern 1pt} {{{(BB^*)}}^{{ - 1}}}x} \right\|}_{2}} = \sqrt {(B{\kern 1pt} ^*{\kern 1pt} {{{(BB^*)}}^{{ - 1}}}x,B{\kern 1pt} ^*{\kern 1pt} {{{(BB^*)}}^{{ - 1}}}x)} = \sqrt {{{x}^{{\text{T}}}}{{{(BB^*)}}^{{ - 1}}}x} .$$

Corollary 1 is proven.

Proof of Lemma 3. Let B = Y. Then, taking into account the spectral decomposition of the matrix A = SΛS–1, the following equalities are true for all k\(\mathbb{N}\):

$$\begin{gathered} {{b}_{k}}b_{k}^{{\text{T}}} = {{A}^{{k - 1}}}b{{b}^{{\text{T}}}}{{({{A}^{{k - 1}}})}^{{\text{T}}}} = S{{\Lambda }^{{k - 1}}}{{S}^{{ - 1}}}b{{b}^{{\text{T}}}}{{({{S}^{{ - 1}}})}^{{\text{T}}}}{{\Lambda }^{{k - 1}}}{{S}^{{\text{T}}}} \\ = S\operatorname{diag} (\lambda _{1}^{{k - 1}}, \ldots ,\lambda _{n}^{{k - 1}})\left( {\begin{array}{*{20}{c}} {{{\alpha }_{{11}}}}& \ldots &{{{\alpha }_{{1n}}}} \\ \vdots & \ddots & \vdots \\ {{{\alpha }_{{n1}}}}& \ldots &{{{\alpha }_{{nn}}}} \end{array}} \right)\operatorname{diag} (\lambda _{1}^{{k - 1}}, \ldots ,\lambda _{n}^{{k - 1}}){{S}^{{\text{T}}}} \\ = S\left( {\begin{array}{*{20}{c}} {{{{({{\lambda }_{1}}{{\lambda }_{1}})}}^{{k - 1}}}{{\alpha }_{{11}}}}& \ldots &{{{{({{\lambda }_{1}}{{\lambda }_{n}})}}^{{k - 1}}}{{\alpha }_{{1n}}}} \\ \vdots & \ddots & \vdots \\ {{{{({{\lambda }_{n}}{{\lambda }_{1}})}}^{{k - 1}}}{{\alpha }_{{n1}}}}& \ldots &{{{{({{\lambda }_{n}}{{\lambda }_{n}})}}^{{k - 1}}}{{\alpha }_{{nn}}}} \end{array}} \right){{S}^{{\text{T}}}}. \\ \end{gathered} $$

Due to the inclusion b\({{\mathbb{L}}_{{ < 1}}}\), the coefficients αij are equal to zero for all i, j = \(\overline {1,n} \) such that at least one of the two eigenvalues λi or λj turns out to be greater than or equal to 1:

$${{\alpha }_{{ij}}} = 0,\;\,{\text{if}}\,\;\left| {{{\lambda }_{i}}} \right|\; \geqslant \;1\;\,{\text{or}}\,\;\left| {{{\lambda }_{j}}} \right|\; \geqslant \;1.$$
(A.2)

Hence, taking into account the expression for the sum of an infinite decreasing geometric progression, we get the following equality:

$$\sum\limits_{k = 1}^\infty {{{{({{\lambda }_{i}}{{\lambda }_{j}})}}^{{k - 1}}}{{\alpha }_{{ij}}}} = \left\{ {\begin{array}{*{20}{l}} {\frac{{{{\alpha }_{{ij}}}}}{{1 - {{\lambda }_{i}}{{\lambda }_{j}}}},\;\,}&{\left| {{{\lambda }_{i}}} \right| < 1\;{\text{and}}\;\left| {{{\lambda }_{j}}} \right| < 1,} \\ {0,}&{\left| {{{\lambda }_{i}}} \right|\; \geqslant \;1\;{\text{or}}\;\left| {{{\lambda }_{j}}} \right|\; \geqslant \;1,} \end{array}} \right.$$

which, due to the (A.2), coincides with the definition of βij.

Then the following chain of equalities is true:

$$\begin{gathered} BB^* = \sum\limits_{k = 1}^\infty {{{b}_{k}}b_{k}^{{\text{T}}}} = S\left( {\begin{array}{*{20}{c}} {\sum\limits_{k = 1}^\infty {{{{({{\lambda }_{1}}{{\lambda }_{1}})}}^{{k - 1}}}{{\alpha }_{{11}}}} }& \ldots &{\sum\limits_{k = 1}^\infty {{{{({{\lambda }_{1}}{{\lambda }_{n}})}}^{{k - 1}}}{{\alpha }_{{1n}}}} } \\ \vdots & \ddots & \vdots \\ {\sum\limits_{k = 1}^\infty {{{{({{\lambda }_{n}}{{\lambda }_{1}})}}^{{k - 1}}}{{\alpha }_{{n1}}}} }& \ldots &{\sum\limits_{k = 1}^\infty {{{{({{\lambda }_{n}}{{\lambda }_{n}})}}^{{k - 1}}}{{\alpha }_{{nn}}}} } \end{array}} \right){{S}^{{\text{T}}}} \\ = S\left( {\begin{array}{*{20}{c}} {{{\beta }_{{11}}}}& \ldots &{{{\beta }_{{1n}}}} \\ \vdots & \ddots & \vdots \\ {{{\beta }_{{n1}}}}& \ldots &{{{\beta }_{{nn}}}} \end{array}} \right){{S}^{{\text{T}}}} = H. \\ \end{gathered} $$

This, taking into account Corollary 1, implies the equality \({{H}_{{\mathcal{Y},\infty }}}\) = H–1.

The second item of Lemma 3 is proven in a similar way under the redesignation B = X.

Lemma 3 is proven.

Proof of Lemma 4. The proof follows directly from (6) and (13).

Proof of Lemma 5. The proof follows directly from (7) and (13).

Proof of Lemma 6. Since all eigenvalues of the matrix A are strictly less than 1 in absolute value, according to [22, Theorem 5.6.12] the relation ||Ak|| \(\xrightarrow{{k \to \infty }}\) 0 is true. Then, by definition of the limit there is M\(\mathbb{N}\) for αr ∈ [0; 1) such that ||AM|| = \({{\sup }_{{{{{\left\| x \right\|}}_{r}}\,\leqslant \,1}}}{{\left\| {{{A}^{M}}x} \right\|}_{r}}\) < αr. Since the inequality

$${{\left\| {{{A}^{M}}(x - y)} \right\|}_{r}}\;\leqslant \;\left\| {{{A}^{M}}} \right\|{{\left\| {x - y} \right\|}_{r}}\;\leqslant \;{{\alpha }_{r}}{{\left\| {x - y} \right\|}_{r}}$$

is true, AM is a contraction with the contraction factor αr ∈ [0; 1).

Let B ' = (b1, b2, …) ∈ \(l_{q}^{n}\), C ' = (c1, c2, …) ∈ \(l_{q}^{n}\). Then

$${{\left\| {{\mathbf{F}}_{{A,b}}^{{(M)}}(B{\kern 1pt} ') - {\mathbf{F}}_{{A,b}}^{{(M)}}(C{\kern 1pt} ')} \right\|}_{{l_{q}^{n}}}} = \left\| {(b,Ab, \ldots {{A}^{{M - 1}}}b,{{A}^{M}}{{b}_{1}},{{A}^{M}}{{b}_{2}}, \ldots )} \right.$$
$${{\left. { - \;(b,Ab, \ldots {{A}^{{M - 1}}}b,{{A}^{M}}{{c}_{1}},{{A}^{M}}{{c}_{2}}, \ldots )} \right\|}_{{l_{q}^{n}}}}$$
$$ = {{\left\| {(0, \ldots ,0,{{A}^{M}}({{b}_{1}} - {{c}_{1}}),{{A}^{M}}({{b}_{2}} - {{c}_{2}}), \ldots )} \right\|}_{{l_{q}^{n}}}}$$
$$ = {{\left\| {({{A}^{M}}({{b}_{1}} - {{c}_{1}}),{{A}^{M}}({{b}_{2}} - {{c}_{2}}), \ldots )} \right\|}_{{l_{q}^{n}}}}$$
$$ = \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} {{\left\| {({{A}^{M}}({{b}_{1}} - {{c}_{1}}),{{A}^{M}}({{b}_{2}} - {{c}_{2}}), \ldots )u} \right\|}_{r}}$$
$$ = \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} {{\left\| {\sum\limits_{k = 1}^\infty {{{A}^{M}}({{b}_{k}} - {{c}_{k}}){{u}_{k}}} } \right\|}_{r}} = \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} {{\left\| {{{A}^{M}}\sum\limits_{k = 1}^\infty {{{b}_{k}}{{u}_{k}}} - {{A}^{M}}\sum\limits_{k = 1}^\infty {{{c}_{k}}{{u}_{k}}} } \right\|}_{r}}$$
$$\leqslant \;\mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} {{\alpha }_{r}}{{\left\| {\sum\limits_{k = 1}^\infty {{{b}_{k}}{{u}_{k}}} - \sum\limits_{k = 1}^\infty {{{c}_{k}}{{u}_{k}}} } \right\|}_{r}} = {{\alpha }_{r}}{{\left\| {B{\kern 1pt} '\; - C{\kern 1pt} '{\kern 1pt} } \right\|}_{{l_{q}^{n}}}}.$$

Lemma 6 is proven.

Proof of Corollary 2. The mapping \({\mathbf{F}}_{{A,b}}^{{(M)}}\) is a contraction due to Theorem 6, and the space \(l_{q}^{n}\) is complete. Then, by virtue of the Banach contraction mapping principle [25], there is a unique fixed-point of \({\mathbf{F}}_{{A,b}}^{{(M)}}\). Moreover, by construction, a fixed-point of the mapping \({\mathbf{F}}_{{A,b}}^{{}}\) must also be a fixed-point of the mapping \({\mathbf{F}}_{{A,b}}^{{(M)}}\). Taking into account Lemma 4 the unique fixed-point of \({\mathbf{F}}_{{A,b}}^{{(M)}}\) is Y\(l_{q}^{n}\). Hence, Y is the unique fixed-point of \({\mathbf{F}}_{{A,b}}^{{}}\).

Note that the representation \({\mathbf{F}}_{{A,b}}^{{(NM)}}\)(O) = YNM is valid, where by O  : lp\(\mathbb{R}_{r}^{n}\) denotes the zero operator, which is identified with the zero sequence (0, 0, …) ∈ \(l_{q}^{n}\). Then according to Theorem 6

$${{\left\| {{{Y}_{\infty }} - {{Y}_{{NM}}}} \right\|}_{{l_{q}^{n}}}} = {{\left\| {{\mathbf{F}}_{{A,b}}^{{(M)}}({{Y}_{\infty }}) - {\mathbf{F}}_{{A,b}}^{{(M)}}\left( {{\mathbf{F}}_{{A,b}}^{{(NM - M)}}(O)} \right)} \right\|}_{{l_{{^{q}}}^{n}}}}$$
$$\leqslant \;{{\alpha }_{r}}{{\left\| {{{Y}_{\infty }} - {\mathbf{F}}_{{A,b}}^{{(NM - M)}}(O)} \right\|}_{{l_{q}^{n}}}}$$
$$\leqslant \;{{\alpha }_{r}}{{\left\| {{{Y}_{\infty }} - {\mathbf{F}}_{{A,b}}^{{(NM)}}(O)} \right\|}_{{l_{q}^{n}}}} + {{\alpha }_{r}}{{\left\| {{\mathbf{F}}_{{A,b}}^{{(NM)}}(O) - {\mathbf{F}}_{{A,b}}^{{(NM - M)}}(O)} \right\|}_{{l_{q}^{n}}}}$$
$$\leqslant \;{{\alpha }_{r}}{{\left\| {{{Y}_{\infty }} - {\mathbf{F}}_{{A,b}}^{{(NM)}}(O)} \right\|}_{{l_{q}^{n}}}} + \alpha _{r}^{N}{{\left\| {{\mathbf{F}}_{{A,b}}^{{(NM)}}(O) - O} \right\|}_{{l_{q}^{n}}}}$$
$$ = {{\alpha }_{r}}{{\left\| {{{Y}_{\infty }} - {{Y}_{{NM}}}} \right\|}_{{l_{q}^{n}}}} + \alpha _{r}^{N}{{\left\| {{{Y}_{M}}} \right\|}_{{l_{q}^{n}}}},$$
$${{\left\| {{{Y}_{\infty }} - {{Y}_{{NM}}}} \right\|}_{{l_{q}^{n}}}}\;\leqslant \;\frac{{\alpha _{r}^{N}}}{{1 - {{\alpha }_{r}}}}{{\left\| {{{Y}_{M}}} \right\|}_{{l_{q}^{n}}}}.$$

Corollary 2 is proven.

Proof of Corollary 3. The proof follows from Corollary 2 by replacing A with A–1, b with A–1b in conjunction with Lemma 5 and the fact that the eigenvalues of A–1 are inverse of the eigenvalues of A [28].

Proof of Lemma 7. Let’s consider the value

$${{\rho }_{H}}(B{\kern 1pt} '{\kern 1pt} {{\mathcal{E}}_{p}}(\infty ),C{\kern 1pt} '{\kern 1pt} {{\mathcal{E}}_{p}}(\infty ))$$
$$ = \max \left\{ {\mathop {\sup }\limits_{x \in B{\kern 1pt} '{\kern 1pt} {{\mathcal{E}}_{p}}(\infty )} \mathop {\inf }\limits_{y \in C{\kern 1pt} '{\kern 1pt} {{\mathcal{E}}_{p}}(\infty )} {{{\left\| {x - y} \right\|}}_{r}};\;\mathop {\sup }\limits_{x \in C{\kern 1pt} '{\kern 1pt} {{\mathcal{E}}_{p}}(\infty )} \mathop {\inf }\limits_{y \in B{\kern 1pt} '{\kern 1pt} {{\mathcal{E}}_{p}}(\infty )} {{{\left\| {x - y} \right\|}}_{r}}} \right\}$$
$$ = \max \left\{ {\mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} \mathop {\inf }\limits_{{v} \in {{\mathcal{E}}_{p}}(\infty )} {{{\left\| {B{\kern 1pt} '{\kern 1pt} u - C{\kern 1pt} '{\kern 1pt} {v}} \right\|}}_{r}};\;\mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} \mathop {\inf }\limits_{{v} \in {{\mathcal{E}}_{p}}(\infty )} {{{\left\| {C{\kern 1pt} '{\kern 1pt} u - B{\kern 1pt} '{\kern 1pt} {v}} \right\|}}_{r}}} \right\},$$
$$\mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} \mathop {\inf }\limits_{{v} \in {{\mathcal{E}}_{p}}(\infty )} {{\left\| {C{\kern 1pt} '{\kern 1pt} u - B{\kern 1pt} '{\kern 1pt} {v}} \right\|}_{r}} = \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} \mathop {\inf }\limits_{{v} \in {{\mathcal{E}}_{p}}(\infty )} {{\left\| {B{\kern 1pt} '{\kern 1pt} u - C{\kern 1pt} '{\kern 1pt} {v}} \right\|}_{r}}$$
$$ = \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} \mathop {\inf }\limits_{{v} \in {{\mathcal{E}}_{p}}(\infty )} {{\left\| {B{\kern 1pt} '{\kern 1pt} u - C{\kern 1pt} '{\kern 1pt} u + C{\kern 1pt} '{\kern 1pt} u - C{\kern 1pt} '{\kern 1pt} {v}} \right\|}_{r}}$$
$$\leqslant \;\mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} \mathop {\inf }\limits_{{v} \in {{\mathcal{E}}_{p}}(\infty )} \left( {{{{\left\| {B{\kern 1pt} '{\kern 1pt} u - C{\kern 1pt} '{\kern 1pt} u} \right\|}}_{r}} + {{{\left\| {C{\kern 1pt} '{\kern 1pt} u - C{\kern 1pt} '{\kern 1pt} {v}} \right\|}}_{r}}} \right)$$
$$ = \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} \left( {{{{\left\| {(B{\kern 1pt} '\; - C{\kern 1pt} '{\kern 1pt} )u} \right\|}}_{r}} + \mathop {\inf }\limits_{{v} \in {{\mathcal{E}}_{p}}(\infty )} {{{\left\| {C{\kern 1pt} '{\kern 1pt} (u - {v})} \right\|}}_{r}}} \right)$$
$$ = \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} {{\left\| {(B{\kern 1pt} '\; - C{\kern 1pt} '{\kern 1pt} )u} \right\|}_{r}} = {{\left\| {B{\kern 1pt} '\; - C{\kern 1pt} '{\kern 1pt} } \right\|}_{{l_{q}^{n}}}}.$$

Finally we get that

$${{\rho }_{H}}(B{\kern 1pt} '{\kern 1pt} {{\mathcal{E}}_{p}}(\infty ),\;C{\kern 1pt} '{\kern 1pt} {{\mathcal{E}}_{p}}(\infty ))\;\leqslant \;{{\left\| {B{\kern 1pt} '\; - C{\kern 1pt} '{\kern 1pt} } \right\|}_{{l_{q}^{n}}}}.$$

Lemma 7 is proven.

Proof of Theorem 1. The proof follows directly from Corollary 2, the representations (11) and (8), and Lemma 7.

Proof of Theorem 2. The proof follows directly from Corollary 3, the representations (12) and (9), and Lemma 7.

Proof of Theorem 3. As is known [27], for any \(\mathcal{X}\), \(\mathcal{Y}\)\({{\mathbb{K}}_{n}}\) satisfying the condition ρH(\(\mathcal{X}\), \(\mathcal{Y}\)) \(\leqslant \) R, the following inclusion is true:

$$\mathcal{X} \subset \mathcal{Y} + \mathcal{B}_{R}^{r}(0).$$

From here, taking into account Theorem 1, Theorem 3 follows.

Proof of Theorem 4. The proof is similar to the proof of Theorem 3, replacing Theorem 1 with Theorem 2.

Proof of Theorem 5. (1) Item 1 follows from the definition of the operator norm and the fact that the maximum of a convex function is achieved on the boundary of the convex set [22]:

$${{\left\| {B{\kern 1pt} '{\kern 1pt} } \right\|}_{{l_{q}^{n}}}} = \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} {{\left\| {B{\kern 1pt} '{\kern 1pt} u} \right\|}_{r}} = \mathop {\sup }\limits_{\sum\limits_{k = 1}^\infty {{{{\left| {{{u}_{k}}} \right|}}^{p}} = 1} } {{\left( {\sum\limits_{i = 1}^n {{{{\left| {\sum\limits_{k = 1}^\infty {{{b}_{{ik}}}{{u}_{k}}} } \right|}}^{r}}} } \right)}^{{\frac{1}{r}}}}$$
$$ = {{\left( {\mathop {\sup }\limits_{\sum\limits_{k = 1}^\infty {{{{\left| {{{u}_{k}}} \right|}}^{p}} = 1} } \sum\limits_{i = 1}^n {{{{\left| {\sum\limits_{k = 1}^M {{{b}_{{ik}}}{{u}_{k}}} } \right|}}^{r}}} } \right)}^{{\frac{1}{r}}}} = {{\left( {\mathop {\max }\limits_{\sum\limits_{k = 1}^M {{{{\left| {{{u}_{k}}} \right|}}^{p}} = 1} } \sum\limits_{i = 1}^n {{{{\left| {\sum\limits_{k = 1}^M {{{b}_{{ik}}}{{u}_{k}}} } \right|}}^{r}}} } \right)}^{{\frac{1}{r}}}}.$$

(2) By virtue of Hölder's inequality, item 2 follows from item 1:

$${{\left\| {B{\kern 1pt} '{\kern 1pt} } \right\|}_{{l_{q}^{n}}}}\;\leqslant \;{{\left( {\mathop {\max }\limits_{\sum\limits_{k = 1}^M {{{{\left| {{{u}_{k}}} \right|}}^{p}} = 1} } \sum\limits_{i = 1}^n {{{{\left[ {{{{\left( {\sum\limits_{k = 1}^M {{{{\left| {{{b}_{{ik}}}} \right|}}^{q}}} } \right)}}^{{\frac{1}{q}}}}{{{\left( {\sum\limits_{k = 1}^M {{{{\left| {{{u}_{k}}} \right|}}^{p}}} } \right)}}^{{\frac{1}{p}}}}} \right]}}^{r}}} } \right)}^{{\frac{1}{r}}}} = {{\left( {\sum\limits_{i = 1}^n {{{{\left( {\sum\limits_{k = 1}^M {{{{\left| {{{b}_{{ik}}}} \right|}}^{q}}} } \right)}}^{{\frac{r}{q}}}}} } \right)}^{{\frac{1}{r}}}}.$$

(3) Also, for M = 1, item 3 follows from item 1:

$${{\left\| {B{\kern 1pt} '{\kern 1pt} } \right\|}_{{l_{q}^{n}}}} = {{\left( {\mathop {\max }\limits_{{{{\left| {{{u}_{1}}} \right|}}^{p}} = 1} \sum\limits_{i = 1}^n {{{{\left| {{{b}_{{i1}}}{{u}_{1}}} \right|}}^{r}}} } \right)}^{{\frac{1}{r}}}} = {{\left( {\sum\limits_{i = 1}^n {{{{\left| {{{b}_{{i1}}}} \right|}}^{r}}} } \right)}^{{\frac{1}{r}}}}.$$

(4) For r = p = 2 the operator norm can be represented in terms of the scalar product in \(\mathbb{R}_{2}^{n}\):

$$(x,y) = \sum\limits_{i = 1}^n {{{x}_{i}}{{y}_{i}}.} $$

Then, taking into account item 1, the following representation is true:

$${{\left( {{{{\left\| {B{\kern 1pt} '{\kern 1pt} } \right\|}}_{{l_{q}^{n}}}}} \right)}^{2}} = \mathop {\max }\limits_{\substack{ u \in {{\mathbb{R}}^{M}}: \\ (u,u) = 1 } } (Bu,Bu) = \mathop {\max }\limits_{\substack{ u \in {{\mathbb{R}}^{M}}: \\ (u,u) = 1 } } (u,{{B}^{{\text{T}}}}Bu).$$

Due to the Lagrange multiplier method [29], the maximum point of the optimization problem under consideration u* ∈ \({{\mathbb{R}}^{M}}\) satisfies the following conditions:

$$\left\{ \begin{gathered} \nabla \left( {(u,{{B}^{{\text{T}}}}Bu) + \lambda (1 - (u,u))} \right) = 0, \hfill \\ (u,u) = 1, \hfill \\ \end{gathered} \right.\;\;\left\{ \begin{gathered} 2{{B}^{{\text{T}}}}B - 2\lambda u = 0, \hfill \\ (u,u) = 1, \hfill \\ \end{gathered} \right.\;\;\left\{ \begin{gathered} ({{B}^{{\text{T}}}}B - \lambda I)u = 0, \hfill \\ (u,u) = 1. \hfill \\ \end{gathered} \right.$$

Then, by definition, u* is a normed eigenvector of the matrix BTB corresponding to the eigenvalue λ*, i.e.

$${{\left( {{{{\left\| {B{\kern 1pt} '{\kern 1pt} } \right\|}}_{{l_{q}^{n}}}}} \right)}^{2}} = (u^*,{{B}^{{\text{T}}}}Bu^*) = (u^*,\lambda {\kern 1pt} ^*{\kern 1pt} u^*) = \lambda {\kern 1pt} ^*{\kern 1pt} .$$

Item 4 is completely proven.

(5) Item 5 follows from the representation of the operator norm B ' and the Riesz theorem on the norm of a linear and bounded functional in lp [25]:

$${{\left\| {B{\kern 1pt} '{\kern 1pt} } \right\|}_{{l_{q}^{n}}}} = \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} \mathop {\max }\limits_{i = \overline {1,n} } \left| {\sum\limits_{k = 1}^\infty {{{b}_{{ik}}}{{u}_{k}}} } \right| = \mathop {\max }\limits_{i = \overline {1,n} } {{\left( {\sum\limits_{k = 1}^\infty {{{{\left| {{{b}_{{ik}}}} \right|}}^{q}}} } \right)}^{{\frac{1}{q}}}} = \mathop {\max }\limits_{i = \overline {1,n} } {{\left( {\sum\limits_{k = 1}^M {{{{\left| {{{b}_{{ik}}}} \right|}}^{q}}} } \right)}^{{\frac{1}{q}}}}.$$

(6) To prove item 6, we take into account the representation |γ| = max{γ, –γ} for any γ ∈ \(\mathbb{R}\) and consider the following chain of equalities:

$${{\left\| {B{\kern 1pt} '{\kern 1pt} } \right\|}_{{l_{q}^{n}}}} = \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} \sum\limits_{i = 1}^n {\left| {\sum\limits_{k = 1}^\infty {{{b}_{{ik}}}{{u}_{k}}} } \right|} = \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} \sum\limits_{i = 1}^n {\mathop {\max }\limits_{{{\gamma }_{i}} \in \{ - 1;1\} } } \left( {{{\gamma }_{i}}\sum\limits_{k = 1}^\infty {{{b}_{{ik}}}{{u}_{k}}} } \right)$$
$$ = \mathop {\max }\limits_{\substack{ {{\gamma }_{i}} \in \{ - 1;1\} \\ i = \overline {1,n} }} \mathop {\sup }\limits_{u \in {{\mathcal{E}}_{p}}(\infty )} \left| {\sum\limits_{k = 1}^\infty {\left( {\sum\limits_{i = 1}^n {{{\gamma }_{i}}{{b}_{{ik}}}} } \right){{u}_{k}}} } \right| = \mathop {\max }\limits_{\substack{ {{\gamma }_{i}} \in \{ - 1;1\} \\ i = \overline {1,n} }} {{\left( {\sum\limits_{k = 1}^\infty {{{{\left| {\sum\limits_{i = 1}^n {{{\gamma }_{i}}{{b}_{{ik}}}} } \right|}}^{q}}} } \right)}^{{\frac{1}{q}}}}$$
$$ = \mathop {\max }\limits_{\substack{ {{\gamma }_{i}} \in \{ - 1;1\} \\ i = \overline {1,n} }} {{\left( {\sum\limits_{k = 1}^M {{{{\left| {\sum\limits_{i = 1}^n {{{\gamma }_{i}}{{b}_{{ik}}}} } \right|}}^{q}}} } \right)}^{{\frac{1}{q}}}}.$$

Theorem 5 is completely proven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibragimov, D.N. On the External Estimation of Reachable and Null-Controllable Limit Sets for Linear Discrete-Time Systems with a Summary Constraint on the Scalar Control. Autom Remote Control 85, 321–340 (2024). https://doi.org/10.1134/S0005117924040027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117924040027

Keywords:

Navigation