Skip to main content
Log in

Game-Theoretic Analysis of the Interaction of Economic Agents in the Cournot Oligopoly with Consideration of the Linear Structure, the Green Effect, and Fairness Concern

  • MATHEMATICAL GAME THEORY AND APPLICATIONS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A comparative analysis of the efficiency of various ways of organization of economic agents is carried out, taking into account the structure and regulations of their interaction in the models of the Cournot oligopoly. The Cournot oligopoly models in the form of a supply chain are constructed and analytically investigated, taking into account the green effect and concern for fairness. For symmetric models of the Cournot oligopoly with different ways of organization of economic agents, the respective structures of social and individual preferences are analytically obtained. A numerical study of the Cournot oligopoly models in various forms with asymmetrical agents has been carried out, and the corresponding structures of social and individual preferences have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Algorithmic Game Theory, Nisan, N., Roughgarden, T., Tardos, E., and Vazirany, V., Eds., Cambridge: UniversityPress, 2007.

  2. Azevedo, S.G., Carvalho, H., and Machado, V.C., The Influence of Green Practices on Supply Chain Performance: A Case Study Approach, Transp. Res. Part E: Logist. Transp. Rev., 2011, vol. 47, no. 6, pp. 850–871.

    Article  Google Scholar 

  3. Basar, T. and Olsder, G.Y., Dynamic Non-Cooperative Game Theory, SIAM, 1999.

    Google Scholar 

  4. Burgess, K., Singh, P.J., and Koroglu, R., Supply Chain Management: A Structured Literature Review and Implications for Future Research, Int. J. Operat. Product. Manag., 2006, vol. 26, no. 7, pp. 703–729.

    Article  Google Scholar 

  5. Cachon, G.P. and Netessine, S., Game Theory in Supply Chain Analysis, in Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business Era, Simchi-Levi, D., Wu, S.D., and Shen, Z.M., Eds., Kluwer Academic Publishers, 2004.

  6. Dubey, P., Inefficiency of Nash Equilibria, Math. Operations Research, 1986, vol. 11, no. 1, pp. 1–8.

    Article  MathSciNet  Google Scholar 

  7. Estampe, D., Supply Chains: Performance and Evaluation, Wiley, 2018.

  8. Fahimnia, B., Sarkis, J., and Davarzani, H., Green Supply Chain Management: A Review and Biblio-metric Analysis, Int. J. Product. Econ., 2015, vol. 162, pp. 101–114.

    Article  Google Scholar 

  9. Fehr, E. and Schmidt, K.M., A Theory of Fairness, Competition, and Cooperation, Quart. J. Econ., 1999, vol. 114, no. 3, pp. 817–868.

    Article  Google Scholar 

  10. Fudenberg, D. and Tirole, J., Game Theory, MIT Press, 2002.

    Google Scholar 

  11. Ivanov, D. and Dolgui, A., Viability of Intertwined Supply Networks: Extending the Supply Chain Resilience Angles towards Survivability. A Position Paper Motivated by COVID-19 Outbreak, Int. J. of Production Research, 2020, vol. 58, no. 10, pp. 2904–2915.

    Article  Google Scholar 

  12. Ivanov, D. and Sokolov, B., Adaptive Supply Chain Management, Springer, 2010.

  13. Johari, R. and Tsitsiklis, J.N., Efficiency Loss in a Network Resource Allocation Game, Math. Oper. Res., 2004, vol. 29, no. 3, pp. 407–435.

    Article  MathSciNet  Google Scholar 

  14. Jorgensen, S. and Zaccour, G., Differential Games in Marketing, Kluwer Academic Publishers, 2004.

    Book  Google Scholar 

  15. Govindan, K., Kaliyan, M., Kannan, D., and Haq, A.N., Barriers Analysis for Green Supply Chain Management Implementation in Indian Industries Using Analytic Hierarchy Process, Int. J. Product. Econ., 2014, vol. 147, pp. 555–568.

    Article  Google Scholar 

  16. Gunasekaran, A., Subramanian, N., and Rahman, S., Green Supply Chain Collaboration and Incentives: Current Trends and Future Directions, Transp. Res. E: Logist. Transp. Rev., 2015, vol. 74, pp. 1–10.

    Article  Google Scholar 

  17. Kannan, D., Govindan, K., and Rajendran, S., Fuzzy Axiomatic Design Approach Based Green Supplier Selection: A Case Study from Singapore, J. Clean. Product., 2015, vol. 96, pp. 194–208.

    Article  Google Scholar 

  18. Katok, E., Olsen, T., and Pavlov, V., Wholesale Pricing under Mild and Privately Known Concerns for Fairness, Product. Operat. Manag., 2014, vol. 23, no. 2, pp. 285–302.

    Article  Google Scholar 

  19. Katok, E. and Pavlov, V., Fairness in Supply Chain Contracts: A Laboratory Study, J. Operat. Manag., 2013, vol. 31, no. 3, pp. 129–137.

    Article  Google Scholar 

  20. Mas-Colell, A., Whinston, M.D., and Green, J.R., Microeconomic Theory, Oxford University Press, 1995.

    Google Scholar 

  21. Moulin, H., Theorie des jeux pour l’economie et la politique, Paris: Hermann, 1981.

    Google Scholar 

  22. Moulin, H. and Shenker, S., Strategy Proof Sharing of Submodular Costs: Budget Balance Versus Efficiency, Econ. Theory, 2001, vol. 18, no. 3, pp. 511–533.

    Article  Google Scholar 

  23. Nagarajan, M. and Sosic, G., Game-Theoretic Analysis of Cooperation among Supply Chain Agents: Review and Extensions, Europ. J. Operat. Res., 2008, vol. 187, no. 3, pp. 719–745.

    Article  MathSciNet  Google Scholar 

  24. Narahari, Y., Game Theory and Mechanism Design, World Scientific, 2014.

    Book  Google Scholar 

  25. Nie, T. and Du, S., Dual-Fairness Supply Chain with Quantity Discount Contracts, Europ. J. Oper. Res., 2017, vol. 258, no. 2, pp. 491–500.

    Article  MathSciNet  Google Scholar 

  26. Osborne, M.J. and Rubinstein, A., A Course in Game Theory, MIT Press, 1994.

    Google Scholar 

  27. Papadimitriou, C.H., Algorithms, Games, and the Internet, Proc. 33rd Symp. Theory of Computing, 2001, pp. 749–753.

  28. Roughgarden, T., Selfish Routing and the Price of Anarchy, MIT Press, 2005.

    Google Scholar 

  29. Sarkis, J., Zhu, Q., and Lai, K.H., An Organizational Theoretic Review of Green Supply Chain Management Literature, Int. J. Product. Econ., 2011, vol. 130, no. 1, pp. 1–15.

    Article  Google Scholar 

  30. Sharma, A. and Jain, D., Game-Theoretic Analysis of Green Supply Chain under Cost-Sharing Contract with Fairness Concern, Int. Game Theory Review, 2021, vol. 23, no. 2, p. 2050017.

    Article  MathSciNet  Google Scholar 

  31. Sharma, A. and Nandi, S., A Review of Behavioral Decision Making in the Newsvendor Problem, Operat. Supply Chain Management Int. J., 2018, vol. 11, no. 4, pp. 200–213.

    Google Scholar 

  32. Srivastava, S.K., Green Supply-Chain Management: A State-of-the-Art Literature Review, Int. J. Manag. Rev., 2007, vol. 9, no. 1, pp. 53–80.

    Article  Google Scholar 

  33. Tian, Y., Govindan, K., and Zhu, Q., A System Dynamics Model Based on Evolutionary Game Theory for Green Supply Chain Management Diffusion among Chinese manufacturers, J. Clean. Product., 2014, vol. 80, pp. 96–105.

    Article  Google Scholar 

  34. Vives, X., Oligopoly Pricing: Old Ideas and New Tools, MIT Press, 1999.

    Google Scholar 

  35. Zhu, Q. and Cote, R.P., Integrating Green Supply Chain Management into an Embryonic Eco-Industrial Development: A Case Study of the Guitang Group, J. Clean. Product., 2004, vol. 12, nos. 8–10, pp. 1025–1035.

    Article  Google Scholar 

  36. Zhu, Q., Geng, Y., Fujita, T., and Hashimoto, S., Green Supply Chain Management in Leading Manufacturers: Case Studies in Japanese Large Companies, Management Res. Rev., 2010, vol. 33, no. 4, pp. 380–392.

    Article  Google Scholar 

Download references

Funding

The paper was supported by the South Federal University, project “Digital Atlas of Political and Socio-Economic Threats and Risks of Development of the South-Russian Borderlands: National and Regional Context (Digital South)” of the Program of Strategic Academic Leadership Priority-2030 no. SP-14-22-06.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. I. Gorbaneva or G. A. Ougolnitsky.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

APPENDIX A

Proof of Theorem 2.1.

$$\frac{{\partial u_{i}^{G}}}{{\partial {{x}_{i}}}} = a - c - 2{{x}_{i}} - \sum\limits_{j \ne i}^{} {{{x}_{j}}} + \sum\limits_{i = 1}^n {{{g}_{j}}} = 0,\;\;i = 1,\,\, \ldots ,\,\,n;$$
$$\frac{{\partial u_{i}^{G}}}{{\partial {{g}_{i}}}} = {{x}_{i}} - 2{{g}_{i}} = 0,\quad i = 1,\,\, \ldots ,\,\,n;$$
$${{x}_{i}} = 2{{g}_{i}},\;\;i = 1,\,\, \ldots ,\,\,n;$$
$$a - c - 4{{g}_{i}} - 2\sum\limits_{j \ne i} {{{g}_{j}}} + \sum\limits_{j = 1}^n {{{g}_{j}}} = 0;\;\;a - c - 3{{g}_{i}} - \sum\limits_{j \ne i} {{{g}_{j}}} = 0;$$
$$3{{g}_{i}} + \sum\limits_{j \ne i} {{{g}_{j}}} = a - c,\;\;i = 1,\,\, \ldots ,\,\,n;$$
$${{g}_{i}} = g,\;\;i = 1,\,\, \ldots ,\,\,n;\;\;3g + (n - 1)g = a - c;$$
$$g = \frac{{a - c}}{{n + 2}},\;\;x = \frac{{2(a - c)}}{{n + 2}}$$

the value u is found by an immediate substitution.

Proof of Theorem 2.3.

$$\frac{{\partial \bar {u}}}{{\partial {{x}_{i}}}} = - \bar {x} + a - c - \bar {x} + \bar {g} = a - c + \bar {g} - 2\bar {x} = 0,\;\;i = 1,\,\, \ldots ,\,\,n;\;\;\frac{{\partial \bar {u}}}{{\partial {{g}_{i}}}} = \bar {x} - 2{{g}_{i}} = 0,\;\;i = 1,\,\, \ldots ,\,\,n;$$
$${{g}_{i}} = g,\;\;{{x}_{i}} = x,\;\;i = 1,\,\, \ldots ,\,\,n;\;\;\bar {x} = nx,\;\;\bar {g} = ng,$$
$$\bar {x} = 2g;\;\;a - c + ng - 4g = 0;$$
$$g = \left\{ {\begin{array}{*{20}{l}} {\frac{{a - c}}{{4 - n}},\;\;}&{n < 4} \\ {0,}&{{\text{otherwise}}{\text{.}}} \end{array}} \right.$$

If g = 0 then x = xC is an optimal solution of the cooperative problem without “green” effect. Then

$$x = \left\{ {\begin{array}{*{20}{l}} {\frac{{2(a - c)}}{{n(4 - n)}},\;\;}&{n < 4} \\ {{{x}^{C}},}&{{\text{otherwise}}{\text{,}}} \end{array}} \right.\;\;\bar {u} = \left\{ {\begin{array}{*{20}{l}} {\frac{{{{{(a - c)}}^{2}}}}{{4 - n}},\;\;}&{n < 4} \\ {{{u}^{C}},}&{{\text{otherwise}}{\text{,}}} \end{array}} \right.$$

Proof of Theorem 2.7. A best response of the agents to the Principal’s strategy (g1, …, gn), or a Nash equilibrium in the game of agents, is determined by solution of the system

$$\frac{{\partial u_{i}^{{ST}}}}{{\partial {{x}_{i}}}} = a - c - 2{{x}_{i}} - \sum\limits_{j \ne i} {{{x}_{j}} + \bar {g}} = 0,\;\;i = 1, \ldots ,n;$$

and then

$$2{{x}_{i}} + \sum\limits_{j \ne i} {{{x}_{j}}} = a - c + \bar {g},\;\;i = 1, \ldots ,n;$$
$${{x}_{i}} = {{x}^{{ST}}},\;\;i = 1, \ldots ,n;$$
$${{x}^{{ST}}} = \frac{{a - c + \bar {g}}}{{n + 1}};\;\;{{\bar {x}}^{{ST}}} = \frac{{n(a - c + \bar {g})}}{{n + 1}}.$$

A substitution of the found best response in the Principal’s payoff function gives

$$\bar {u}(g,{{x}^{{ST}}}) = (a - c - {{\bar {x}}^{{ST}}} + \bar {g}){{\bar {x}}^{{ST}}} - \sum\limits_{i = 1}^n {g_{i}^{2}} $$
$$ = \left( {a - c + \bar {g} - \frac{{n(a - c + \bar {g})}}{{n + 1}}} \right)\frac{{n(a - c + \bar {g})}}{{n + 1}} - \sum\limits_{i = 1}^n {g_{i}^{2}} = \frac{{n{{{(a - c + \bar {g})}}^{2}}}}{{{{{(n + 1)}}^{2}}}} - \sum\limits_{i = 1}^n {g_{i}^{2}.} $$

Then

$$\frac{{\partial \bar {u}}}{{\partial {{g}_{i}}}} = \frac{{2n(a - c + \bar {g})}}{{{{{(n + 1)}}^{2}}}} - 2{{g}_{i}} = 0,\;\;i = 1,\,\, \ldots ,\,\,n;$$
$${{g}_{i}} = {{g}^{{ST}}},\;\;i = 1,\,\, \ldots ,\,\,n;\;\;{{\bar {g}}^{{ST}}} = n{{g}^{{ST}}};$$
$$n(a - c + n{{g}^{{ST}}}) - {{(n + 1)}^{2}}{{g}^{{ST}}} = 0;$$
$${{g}^{{ST}}} = \frac{{n(a - c)}}{{2n + 1}}$$

and we find xST = \(\frac{{(n + 1)(a - c)}}{{2n + 1}}\), uST = \(\frac{{{{{(a - c)}}^{2}}}}{{2n + 1}}\).

Proof of Theorem 2.9. The best response of the agents is still determined by the expression (when n = 2)

$${{x}^{{STFC}}} = \frac{{a - c + \bar {g}}}{3};\;\;{{\bar {x}}^{{STFC}}} = \frac{{2(a - c + \bar {g})}}{3}.$$
$${{x}^{{ST}}} = \frac{{a - c + \bar {g}}}{{n + 1}};\;\;{{\bar {x}}^{{ST}}} = \frac{{n(a - c + \bar {g})}}{{n + 1}}.$$

The Principal’s payoff function is

$${{U}^{{FC}}}(g,x) = (a - c + \bar {g} - \bar {x})\bar {x} - \delta ({{u}_{1}} - {{u}_{2}}) - g_{1}^{2} - g_{2}^{2}.$$

Notice that

$${{u}_{1}}(g,{{x}^{{STFC}}}) - {{u}_{2}}(g,{{x}^{{STFC}}}) = Q(g,{{x}^{{STFC}}})({{x}^{{STFC}}} - {{x}^{{STFC}}}) - g_{1}^{2} + g_{2}^{2} = g_{2}^{2} - g_{1}^{2}.$$

Then a substitution of xSTFC in UFC gives

$$\begin{gathered} {{U}^{{FC}}}(g,{{x}^{{STFC}}}) = \left( {a - c + \bar {g} - \frac{2}{3}(a - c + \bar {g})} \right)\frac{2}{3}(a - c + \bar {g}) - \delta (g_{2}^{2} - g_{1}^{2}) - g_{1}^{2} - g_{2}^{2} \\ = \frac{2}{9}{{(a - c + \bar {g})}^{2}} - (1 - \delta )g_{1}^{2} - (1 + \delta )g_{2}^{2}. \\ \end{gathered} $$

Then we solve the system of equations

$$\frac{{\partial {{U}^{{FC}}}}}{{\partial {{g}_{1}}}} = \frac{4}{9}(a - c + \bar {g}) - 2(1 - \delta ){{g}_{1}} = 0,$$
$$\frac{{\partial {{U}^{{FC}}}}}{{\partial {{g}_{2}}}} = \frac{4}{9}(a - c + \bar {g}) - 2(1 - \delta ){{g}_{2}} = 0$$

and

$${{g}_{1}} = \frac{{2(1 + \delta )(a - c)}}{{5 - 9{{\delta }^{2}}}},\;\;{{g}_{2}} = \frac{{2(1 - \delta )(a - c)}}{{5 - 9{{\delta }^{2}}}}.$$

These are positive when δ < \(\frac{{\sqrt 5 }}{3}\). The pair (\(g_{1}^{{STFC}}\), \(g_{2}^{{STFC}}\)) really maximizes UFC under the conditions \(\frac{{{{\partial }^{2}}{{U}^{{FC}}}}}{{\partial g_{1}^{2}}}\) = \(\frac{4}{9}\) – 2(1 – δ) < 0, or δ < \(\frac{7}{9}\) and |H| = \(\left| {\begin{array}{*{20}{c}} {\frac{4}{9} - 2(1 - \delta )}&{\frac{4}{9}} \\ {\frac{4}{9}}&{\frac{4}{9} - 2(1 + \delta )} \end{array}} \right|\) > 0, or δ < \(\sqrt {\frac{{41}}{{81}}} \). A comparison of the three received inequalities gives the final condition δ < \(\sqrt {\frac{{41}}{{81}}} \). Immediate calculations give

$${{x}_{1}} = {{x}_{2}} = {{x}^{{STFC}}} = \frac{{3(1 - {{\delta }^{2}})(a - c)}}{{{{{(5 - 9{{\delta }^{2}})}}^{2}}}};$$
$$u_{1}^{{STFC}} = \frac{{{{{(1 + \delta )}}^{2}}(5 - 18\delta + {{\delta }^{2}}){{{(a - c)}}^{2}}}}{{{{{(5 - 9{{\delta }^{2}})}}^{2}}}},\;\;u_{2}^{{STFC}} = \frac{{{{{(1 - \delta )}}^{2}}(5 - 18\delta + {{\delta }^{2}}){{{(a - c)}}^{2}}}}{{{{{(5 - 9{{\delta }^{2}})}}^{2}}}}.$$

APPENDIX B

Proof of Theorem 4.1.

$$\frac{{\partial u_{i}^{G}}}{{\partial {{x}_{i}}}} = - {{x}_{i}} + a - {{c}_{i}} - \sum\limits_{j = 1}^n {{{x}_{j}}} + \alpha \sum\limits_{i = 1}^n {{{g}_{j}}} = 0,\;\;i = 1,\,\, \ldots ,\,\,n;$$
$$\frac{{\partial u_{i}^{G}}}{{\partial {{g}_{i}}}} = \alpha {{x}_{i}} - 2{{\beta }_{i}}{{g}_{i}} = 0,\;\;i = 1,\,\, \ldots ,\,\,n.$$

From the latter expression

$${{g}_{i}} = \frac{{\alpha {{x}_{i}}}}{{2{{\beta }_{i}}}},\;\;i = 1,\,\, \ldots ,\,\,n.$$

A substitution of the received dependency into the first equality gives

$${{x}_{i}} = a - {{c}_{i}} + \sum\limits_{j = 1}^n {\left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{j}}}} - 1} \right){{x}_{j}}} ,\;\;i = 1,\,\, \ldots ,\,\,n.$$

Multiply both sides of the equality by the expression in brackets:

$$\left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{i}}}} - 1} \right){{x}_{i}} = \left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{i}}}} - 1} \right)(a - {{c}_{i}}) + \left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{i}}}} - 1} \right)\sum\limits_{j = 1}^n {\left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{j}}}} - 1} \right){{x}_{j}}} .$$

The summation of the received equality by i gives

$$\sum\limits_{i = 1}^n {\left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{i}}}} - 1} \right){{x}_{i}}} = \sum\limits_{i = 1}^n {\left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{i}}}} - 1} \right)(a - {{c}_{i}})} + \sum\limits_{i = 1}^n {\left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{i}}}} - 1} \right)\sum\limits_{j = 1}^n {\left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{j}}}} - 1} \right){{x}_{j}}.} } $$

Now calculate \(\sum\limits_{i = 1}^n {\left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{i}}}} - 1} \right){{x}_{i}}} \):

$$\sum\limits_{i = 1}^n {\left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{i}}}} - 1} \right)x_{i}^{{GNE}}} = \frac{{\sum\limits_{i = 1}^n {\left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{i}}}} - 1} \right)(a - {{c}_{i}})} }}{{1 - \sum\limits_{i = 1}^n {\left( {\frac{{{{\alpha }^{2}}}}{{2{{\beta }_{i}}}} - 1} \right)} }}.$$

Proof of Theorem 4.3.

$$\frac{{\partial \bar {u}}}{{\partial {{x}_{i}}}} = - 2\bar {x} + a - {{c}_{i}} + \alpha \bar {g} = 0,\;\;i = 1,\,\, \ldots ,\,\,n;\;\;\frac{{\partial \bar {u}}}{{\partial {{g}_{i}}}} = \alpha \bar {x} - 2{{\beta }_{i}}{{g}_{i}} = 0,\;\;i = 1,\,\, \ldots ,\,\,n.$$

From the latter relation

$${{g}_{i}} = \frac{{\alpha \sum\limits_{i = 1}^n {{{x}_{i}}} }}{{2{{\beta }_{i}}}},\;\;i = 1,\,\, \ldots ,\,\,n.$$

A substitution of the received dependency into the first equality gives

$$\sum\limits_{i = 1}^n {{{x}_{i}}} = \frac{{a - {{c}_{i}}}}{{2 - \frac{{{{\alpha }^{2}}}}{2}\sum\limits_{j = 1}^n {\frac{1}{{{{\beta }_{j}}}}} }},\;\;i = 1,\,\, \ldots ,\,\,n.$$

A substitution of the received result into the objective function of the cooperative problem shows that it is increases when ci decreases, and then

$$\sum\limits_{i = 1}^n {{{x}_{i}}} = \frac{{a - {{c}_{k}}}}{{2 - \frac{{{{\alpha }^{2}}}}{2}\sum\limits_{j = 1}^n {\frac{1}{{{{\beta }_{j}}}}} }},$$

where k is an index of the agent with a minimal ck. Then

$$\begin{gathered} {{x}_{k}} = \frac{{a - {{c}_{k}}}}{{2 - \frac{{{{\alpha }^{2}}}}{2}\sum\limits_{j = 1}^n {\frac{1}{{{{\beta }_{j}}}}} }}, \\ {{x}_{{i \ne k}}} = 0. \\ \end{gathered} $$

Proof of Theorem 4.7. A best response of the agents to the Principal’s strategy (g1, …, gn), or a Nash equilibrium in the game of agents, is determined by the solution of the system

$$\frac{{\partial u_{i}^{{ST}}}}{{\partial {{x}_{i}}}} = a - {{c}_{i}} - {{x}_{i}} - \sum\limits_{j = 1}^n {{{x}_{j}}} + \alpha \bar {g}$$

and

$${{x}_{i}} = a - {{c}_{i}} - \sum\limits_{j = 1}^n {{{x}_{j}}} + \alpha \sum\limits_{j = 1}^n {{{g}_{j}}.} $$

Sum both sides of the inequality:

$$\sum\limits_{i = 1}^n {{{x}_{i}}} = na - \sum\limits_{i = 1}^n {{{c}_{i}}} - n\sum\limits_{j = 1}^n {{{x}_{j}}} + \alpha n\sum\limits_{j = 1}^n {{{g}_{j}}.} $$

The calculation of \(\sum\limits_{i = 1}^n {{{x}_{i}}} \) gives:

$$\sum\limits_{i = 1}^n {{{x}_{i}}} = \frac{{na - \sum\limits_{i = 1}^n {{{c}_{i}}} + \alpha n\sum\limits_{j = 1}^n {{{g}_{j}}} }}{{1 + n}}.$$

A substitution of the received sum into the expression for xi gives

$$x_{i}^{{ST}} = \frac{{a - (1 + n){{c}_{i}} + n\alpha \bar {g}}}{{n + 1}}.$$

A substitution of the found best response into the Principal’s payoff function gives

$$\bar {u}(g,{{x}^{{ST}}}) = \frac{{n{{a}^{2}} - a\sum\limits_{i = 1}^n {{{c}_{i}}} + \alpha an\sum\limits_{j = 1}^n {{{g}_{j}}} }}{{1 + n}}$$
$$ - \;\frac{{\sum\limits_{i = 1}^n {\left( {{{c}_{i}}a - (1 - n)c_{i}^{2} + {{c}_{i}}\sum\limits_{i = 1}^n {{{c}_{i}}} + \alpha {{c}_{i}}\sum\limits_{j = 1}^n {{{g}_{j}}} } \right)} }}{{1 + n}} + \alpha \sum\limits_{i = 1}^n {{{g}_{j}}} \left( {\frac{{na - \sum\limits_{i = 1}^n {{{c}_{i}}} + \alpha n\sum\limits_{j = 1}^n {{{g}_{j}}} }}{{1 + n}}} \right)$$
$$ - \;{{\left( {\frac{{na - \sum\limits_{i = 1}^n {{{c}_{i}}} + \alpha n\sum\limits_{j = 1}^n {{{g}_{j}}} }}{{1 + n}}} \right)}^{2}} - 2\sum\limits_{i = 1}^n {{{\beta }_{i}}g_{i}^{2}.} $$

Then

$$\frac{{\partial \bar {u}}}{{\partial {{g}_{i}}}} = \frac{{a\alpha n}}{{1 + n}} - \frac{{\alpha \sum\limits_{i = 1}^n {{{c}_{i}}} }}{{1 + n}} + \alpha \frac{{na - \sum\limits_{i = 1}^n {{{c}_{i}}} + \alpha n\sum\limits_{i = 1}^n {{{g}_{j}}} }}{{1 + n}} + {{\alpha }^{2}}\frac{{n\sum\limits_{i = 1}^n {{{g}_{j}}} }}{{1 + n}}$$
$$ - \;\frac{{2n\alpha }}{{{{{(n + 1)}}^{2}}}}\left( {na - \sum\limits_{i = 1}^n {{{c}_{i}}} + \alpha n\sum\limits_{j = 1}^n {{{g}_{j}}} } \right) - 2{{\beta }_{i}}{{g}_{i}} = 0,\;\;i = 1, \ldots ,n$$

and

$$g_{i}^{{ST}} = \frac{{\alpha \left( {na - \sum\limits_{i = 1}^n {{{c}_{i}}} + \alpha n\sum\limits_{j = 1}^n {{{g}_{j}}} } \right)}}{{{{\beta }_{i}}{{{(n + 1)}}^{2}}}}$$

and the summation by all indices gives

$$\sum\limits_{i = 1}^n {g_{i}^{{ST}}} = \frac{{\alpha \left( {na - \sum\limits_{i = 1}^n {{{c}_{i}}} } \right)\sum\limits_{i = 1}^n {\frac{1}{{{{\beta }_{i}}}}} }}{{{{{(n + 1)}}^{2}} - n{{\alpha }^{2}}\sum\limits_{i = 1}^n {\frac{1}{{{{\beta }_{i}}}}} }}.$$

Proof of Theorem 4.9. The best response of the agents is still determined by the expression (when n = 2)

$$x_{1}^{{STFC}} = \frac{{a - 2{{c}_{1}} + {{c}_{2}} + \alpha \bar {g}}}{3};\;\;x_{2}^{{STFC}} = \frac{{a - 2{{c}_{2}} + {{c}_{1}} + \alpha \bar {g}}}{3}.$$

The Principal’s payoff function is

$$\begin{gathered} {{U}^{{FC}}}(g,x) = (1 - \delta )(a - {{c}_{1}} - {{x}_{1}} - {{x}_{2}} + \alpha \bar {g}){{x}_{1}} - (1 - \delta ){{\beta }_{1}}g_{1}^{2} \\ + \;(1 + \delta )(a - {{c}_{2}} - {{x}_{1}} - {{x}_{2}} + \alpha \bar {g}){{x}_{2}} - (1 + \delta ){{\beta }_{2}}g_{2}^{2}. \\ \end{gathered} $$

A substitution of xSTFC into UFC gives

$${{U}^{{FC}}}(g,{{x}^{{STFC}}}) = \frac{{1 - \delta }}{9}{{(a - 2{{c}_{1}} + {{c}_{2}} + \alpha \bar {g})}^{2}} - (1 - \delta ){{\beta }_{1}}g_{1}^{2}$$
$$ + \;\frac{{1 + \delta }}{9}{{(a - 2{{c}_{2}} + {{c}_{1}} + \alpha \bar {g})}^{2}} - (1 + \delta ){{\beta }_{2}}g_{2}^{2}.$$

The first order conditions determine the system

$$\frac{{\partial {{U}^{{FC}}}}}{{\partial {{g}_{1}}}} = \frac{{2\alpha (1 - \delta )}}{9}(a - 2{{c}_{1}} + {{c}_{2}} + \alpha \bar {g}){{x}_{2}} - 2(1 - \delta ){{\beta }_{1}}{{g}_{1}}$$
$$ + \;\frac{{2\alpha (1 + \delta )}}{9}(a - 2{{c}_{2}} + {{c}_{1}} + \alpha \bar {g}){{x}_{2}} = 0,$$
$${{g}_{2}} = \frac{{(1 - \delta ){{\beta }_{1}}}}{{(1 + \delta ){{\beta }_{2}}}}{{g}_{1}},$$

and

$$g_{1}^{{STFC}} = g_{2}^{{STFC}} = \frac{{2a - (1 - 3\delta ){{c}_{1}} - (1 + 3\delta ){{c}_{2}}}}{{\frac{{9(1 - \delta ){{\beta }_{1}}}}{\alpha } - 2\alpha \left( {\frac{{(1 - \delta ){{\beta }_{1}}}}{{(1 + \delta ){{\beta }_{2}}}} + 1} \right)}}$$

and all other values are found by substitution of the found ones.

APPENDIX C

Table C1. Solution of the Cournot oligopoly with nine asymmetrical agents (when a = 3000)

APPENDIX D

Table D1. Solution of the Cournot oligopoly with two asymmetrical agents (when a = 10), c1 = 1, d1 = 1, β1 = 100, c2 = 5, d2 = 1, β2 = 100
Table D2. Solution of the Cournot oligopoly with three asymmetrical agents and small cost coefficients and c1 = 1, d1 = 1, c2 = 3, d2 = 1, c3 = 5, d3 = 1 without consideration of the “green” effect (when a = 100)
Table D3. Solution of the Cournot oligopoly with three asymmetrical agents and medium cost coefficients and c1 = 1, d1 = 3, c2 = 3, d2 = 3, c3 = 5, d3 = 3 (when a = 100)
Table D4. Solution of the Cournot oligopoly with three asymmetrical agents and big cost coefficients and c1 = 1, d1 = 5, c2 = 3, d2 = 5, c3 = 5, d3 = 50
Table D5. Solution of the Cournot oligopoly with three asymmetrical agents (when a = 100) and n = 3, c1 = 1, d1 = 1, β1 = 100, c2 = 3, d2 = 1, β2 = 100, c3 = 5, d3 = 5, β3 = 100
Table D6. Solution of the GNE Cournot oligopoly with three asymmetrical agents (when a = 100) and n = 3, c1 = 1, d1 = 1, c2 = 3, d2 = 1, c3 = 5, d3 = 5 and different coefficients βi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbaneva, O.I., Ougolnitsky, G.A. Game-Theoretic Analysis of the Interaction of Economic Agents in the Cournot Oligopoly with Consideration of the Linear Structure, the Green Effect, and Fairness Concern. Autom Remote Control 85, 174–199 (2024). https://doi.org/10.1134/S000511792402005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511792402005X

Keywords:

Navigation