Skip to main content
Log in

Output Stabilization of Lurie-Type Nonlinear Systems in a Given Set

  • NONLINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper considers the problem of stabilizing the output variables of a Lurie-type nonlinear system in a given set at any time instant. A special output transformation is used to reduce the original constrained problem to that of analyzing the input-to-state stability of a new extended system without constraints. For this system, nonlinear control laws are obtained using the technique of linear matrix inequalities. Examples are given to illustrate the effectiveness of the method proposed and confirm the theoretical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Grigor’ev, V.V., Zhuravleva, N.V., Luk’yanova, G.V., and Sergeev, K.A., Sintez sistem metodom modal’nogo upravleniya (Systems Design by the Modal Control Method), St. Petersburg: ITMO University, 2007.

    Google Scholar 

  2. Ioannou, P.A. and Sun, J., Robust Adaptive Control, Courier Corporation, 2012.

    Google Scholar 

  3. Narendra, K.S. and Annaswamy, A.M., Stable Adaptive Systems, Courier Corporation, 2012.

    Google Scholar 

  4. Furtat, I.B. and Gushchin, P.A., Control of Dynamical Plants with a Guarantee for the Controlled Signal to Stay in a Given Set, Autom. Remote Control, 2021, vol. 82, no. 4, pp. 654–669.

    Article  MathSciNet  Google Scholar 

  5. Furtat, I. and Gushchin, P., Nonlinear Feedback Control Providing Plant Output in Given Set, Int. J. Control, 2022, vol. 95, no. 6, pp. 1533–1542. https://doi.org/10.1080/00207179.2020.1861336

    Article  MathSciNet  Google Scholar 

  6. Nguyen, B.H., Furtat, I.B., and Nguyen, Q.C., Observer-Based Control of Linear Plants with the Guarantee for the Controlled Signal to Stay in a Given Set, Diff. Eqs. Control Processes, 2022, no. 4, pp. 95–104.

  7. Furtat, I., Nekhoroshikh, A., and Gushchin, P., Synchronization of Multi-Machine Power Systems under Disturbances and Measurement Errors, Int. J. Adaptive Control Signal Proc., 2022, vol. 36, no. 6, pp. 1272–1284. https://doi.org/10.1002/acs.3372

    Article  Google Scholar 

  8. Pavlov, G.M. and Merkur’ev, G.V., Automation of Power Systems, St. Petersburg: Personnel Training Center of the Unified Energy Systems of Russia, 2001.

    Google Scholar 

  9. Verevkin, A.P. and Kiryushin, O.V., Control of a Reservoir Pressure Maintenance System Using Finite-State Machines, Territoriya Neftegaz, 2008, no. 10, pp. 14–19.

  10. Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nonlinear and Adaptive Control of Complex Systems, Dordrecht-Boston-London: Kluwer Academic Publishers, 1999.

    Google Scholar 

  11. Isidori, A., Nonlinear Control Systems, Springer, 1995.

    Book  Google Scholar 

  12. Khalil, H.K., Nonlinear Systems, 3rd ed., Pearson, 2001.

    Google Scholar 

  13. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmu-shcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems under Exogenous Disturbances: The Technique of Linear Matrix Inequalities), Moscow: LENAND, 2014.

    Google Scholar 

  14. Sturm, J.F., Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over Symmetric Cones, Optim. Method. Softwar., 1999, vol. 11, no. 1, pp. 625–653. https://doi.org/10.1080/10556789908805766

    Article  MathSciNet  Google Scholar 

  15. Toh, K.C., Todd, M.J., and Tutuncu, R.H., SDPT3-a MATLAB Software Package for Semidefinite Programming, ver. 1.3, Optim. Method. Softwar., 1999, vol. 11, pp. 545–581. https://doi.org/10.1080/10556789908805762

    Article  Google Scholar 

  16. Borchers, B., A C Library for Semidefinite Programming, Optim. Method. Softwar., 1999, vol. 11, pp. 613–623.

    Article  MathSciNet  Google Scholar 

  17. Lofberg, J., YALMIP: A Toolbox for Modeling and Optimization in MATLAB, Proc. of the IEEE International Conference on Robotics and Automation, 2004, pp. 284–289. IEEE Cat. No. 04CH37508. https://doi.org/10.1109/CACSD.2004.1393890

Download references

Funding

This work was performed in the Institute for Problems in Mechanical Engineering, the Russian Academy of Sciences, under the support of state order no. 121112500298-6 (The Unified State Information System for Recording Research, Development, Design, and Technological Work for Civilian Purposes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Nguyen.

Additional information

This paper was recommended for publication by L.B. Rapoport, a member of the Editorial Board

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

APPENDIX

APPENDIX

Proof of Theorem 2. Substituting (11) into (8) yields the closed loop system

$$\dot {\varepsilon } = {{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}^{{ - 1}}}\left[ { - K\varepsilon - \mu \operatorname{sgn} (\varepsilon )\left\| {LG} \right\|\left\| C \right\|\left| x \right| + LG\phi + \psi } \right].$$
(A.1)

We choose a Lyapunov function of the form V = \(\frac{1}{2}{{\varepsilon }^{2}}\). Its total time derivative along the solutions of (A.1) is given by

$$\dot {V} = \varepsilon \dot {\varepsilon } = \varepsilon {{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}^{{ - 1}}}\left[ { - K\varepsilon - \mu \operatorname{sgn} (\varepsilon )\left\| {LG} \right\|\left\| C \right\|\left| x \right| + LG\phi + \psi } \right].$$
(A.2)

For \(V\; \geqslant \;c\), we require the condition \(\dot {V}\;\leqslant \; - {\kern 1pt} 2\alpha V\), where α is any known positive number, i.e., \(\dot {V}\) < 0 ∀ε ∉ Ω. Due to LGϕ \(\leqslant \) |LGϕ| \(\leqslant \) μ||LG|| ||C|| |x| and the constraint |ψ| \(\leqslant \) κ, the above conditions can be written as

$$\begin{gathered} ( - K + \alpha ){{\varepsilon }^{2}} + \varepsilon \psi \;\leqslant \;0\;\forall (\varepsilon ,\;\psi ): \hfill \\ 0.5{{\varepsilon }^{2}}\; \geqslant \;c,\;\,{{\psi }^{2}}\;\leqslant \;{{\kappa }^{2}}. \hfill \\ \end{gathered} $$
(A.3)

Denoting z = col{ε, ψ}, we represent (A.3) in the matrix form

$$\begin{gathered} {{z}^{{\text{T}}}}\left[ {\begin{array}{*{20}{c}} { - K + \alpha }&{0.5} \\ \star &0 \end{array}} \right]z\;\leqslant \;0, \\ {{z}^{{\text{T}}}}\left[ {\begin{array}{*{20}{c}} { - 0.5}&0 \\ \star &0 \end{array}} \right]z\;\leqslant \; - {\kern 1pt} c,\quad {{z}^{{\text{T}}}}\left[ {\begin{array}{*{20}{c}} 0&0 \\ \star &1 \end{array}} \right]z\;\leqslant \;{{\kappa }^{2}}. \\ \end{gathered} $$
(A.4)

By the S-procedure [13], inequalities (A.4) hold under conditions (12). Hence, system (A.1) is input-to-state stable, and the variable ε(t) is bounded. Owing to the transformation (4), the output y(t) is also bounded, and the state vector x(t) of system (1) possesses the same property accordingly. Therefore, the control variable u(t) in (11) is bounded as well. Due to Theorem 1, the target condition (3) holds.

The proof of Theorem 2 is complete.

Proof of Proposition 1. Obviously, the matrix MN is symmetric. Let λi, xi, i = 1, …, 2n, be the eigenvalues and eigenvectors of the matrix MN, respectively. Then

$$x_{i}^{{\text{T}}}NMN{{x}_{i}} = {{\lambda }_{i}}x_{i}^{{\text{T}}}N{{x}_{i}}.$$

Hence, the values λi can be expressed as

$${{\lambda }_{i}} = \frac{{x_{i}^{{\text{T}}}NMN{{x}_{i}}}}{{x_{i}^{{\text{T}}}N{{x}_{i}}}}.$$

Since M \( \succ \) 0 and N = NT \( \prec \) 0, we obtain NMN \( \succ \) 0, i.e., xTNMNx > 0 ∀x ≠ 0. In view of xTNx < 0 ∀x ≠ 0, it follows that λi < 0, i = 1, …, 2n. All eigenvalues of the symmetric matrix MN are negative, so the matrix MN is negative definite.

The proof of Proposition 1 is complete.

Proof of Theorem 3. We choose a Lyapunov function of the form V = \(\frac{1}{2}{{\varepsilon }^{{\text{T}}}}\varepsilon \). Its total time derivative along the solutions of (14) is given by

$$\begin{aligned} \dot {V} = {{\varepsilon }^{{\text{T}}}}\dot {\varepsilon } = {{\varepsilon }^{{\text{T}}}}{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}^{{ - 1}}}\left[ { - K{{\varepsilon }^{{^{{^{{^{{^{{}}}}}}}}}}}} \right. \\ - \;\left. {\bar {\sigma }\mu \operatorname{sgn} (\varepsilon )\left\| {{\kern 1pt} {{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}}^{{ - 1}}}} \right\|\left\| {LG} \right\|\left\| C \right\|\left| x \right| + LG\phi + \psi } \right]. \\ \end{aligned} $$
(A.5)

Formula (A.5) can be written as

$$\dot {V} = {{\dot {V}}_{1}} + {{\dot {V}}_{2}},$$
(A.6)

where

$${{\dot {V}}_{1}} = - {{\varepsilon }^{{\text{T}}}}{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}^{{ - 1}}}K\varepsilon + {{\varepsilon }^{{\text{T}}}}{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}^{{ - 1}}}\psi ,$$
$$\begin{aligned} {{{\dot {V}}}_{2}} = - {{\varepsilon }^{{\text{T}}}}{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}^{{ - 1}}}{\text{sgn}}(\varepsilon )\bar {\sigma }\mu \left\| {{{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}}^{{ - 1}}}} \right\|\left\| {LG} \right\|\left\| C \right\|\left| x \right| \\ \quad \quad + \;{{\varepsilon }^{{\text{T}}}}{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}^{{ - 1}}}LG\phi . \\ \end{aligned} $$

Considering \(\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)\;\leqslant \;\bar {\sigma }I\), we estimate \({{\dot {V}}_{2}}\) as

$$\begin{gathered} {{{\dot {V}}}_{2}}\;\leqslant \; - \left( {\sum\limits_{i = 1}^{v} {\left| {{{\varepsilon }_{i}}} \right|} } \right){{{\bar {\sigma }}}^{{ - 1}}}\bar {\sigma }\mu \left\| {{\kern 1pt} {{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}}^{{ - 1}}}} \right\|\left\| {LG} \right\|\left\| C \right\|\left| x \right| \\ + \;\mu \left| \varepsilon \right|\left\| {{\kern 1pt} {{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}}^{{ - 1}}}} \right\|\left\| {LG} \right\|\left\| C \right\|\left| x \right|\;\leqslant \;0. \\ \end{gathered} $$

Based on this inequality, the condition \(\dot {V}\;\leqslant \;0\) is equivalent to \({{\dot {V}}_{1}}\;\leqslant \;0\). In the case under study, \({{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}^{{ - 1}}}\) is a matrix and cannot be neglected when analyzing the sign definiteness of \(\dot {V}\), in contrast to the previous section. For V \( \geqslant \) c, we require the condition \(\dot {V}\;\leqslant \; - {\kern 1pt} 2\alpha V\), where α is any known positive number. Due to the constraints |ψ| \(\leqslant \) κ, the above conditions can be written as

$$\begin{gathered} - {{\varepsilon }^{{\text{T}}}}\left[ {{{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}}^{{ - 1}}}K + \alpha I} \right]\varepsilon + {{\varepsilon }^{{\text{T}}}}{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}^{{ - 1}}}\psi \;\leqslant \;0 \\ \forall (\varepsilon ,\psi ):0.5{{\varepsilon }^{{\text{T}}}}\varepsilon \; \geqslant \;c,\;\,{{\psi }^{{\text{T}}}}\psi \;\leqslant \;{{\kappa }^{2}}. \\ \end{gathered} $$
(A.7)

Denoting z = col{ε, ψ}, z\({{\mathbb{R}}^{{2m}}}\), we represent (A.7) in the matrix form

$$\begin{gathered} {{z}^{{\text{T}}}}\left[ {\begin{array}{*{20}{c}} { - {{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}}^{{ - 1}}}K - \alpha I}&{0.5{{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}}^{{ - 1}}}} \\ \star &0 \end{array}} \right]z\;\leqslant \;0, \\ {{z}^{{\text{T}}}}\left[ {\begin{array}{*{20}{c}} { - 0.5I}&0 \\ \star &0 \end{array}} \right]z\;\leqslant \; - {\kern 1pt} c,\quad {{z}^{{\text{T}}}}\left[ {\begin{array}{*{20}{c}} 0&0 \\ \star &I \end{array}} \right]z\;\leqslant \;{{\kappa }^{2}}. \\ \end{gathered} $$
(A.8)

By the S-procedure, inequalities (A.8) hold under the conditions

$$\begin{gathered} \left[ {\begin{array}{*{20}{c}} { - {{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}}^{{ - 1}}}K - \alpha I + 0.5{{\tau }_{1}}I}&{0.5{{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}}^{{ - 1}}}} \\ \star &{ - {{\tau }_{2}}I} \end{array}} \right] \prec 0, \\ - c{{\tau }_{1}} + {{\kappa }^{2}}{{\tau }_{2}}\;\leqslant \;0. \\ \end{gathered} $$
(A.9)

The first inequality in (A.9) is equivalent to

$$\begin{gathered} \left[ {\begin{array}{*{20}{c}} {{{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}}^{{ - 1}}}}&0 \\ \star &{{{{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}}^{{ - 1}}}} \end{array}} \right] \\ \times \;\left[ {\begin{array}{*{20}{c}} { - K + (0.5{{\tau }_{1}} - \alpha )\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}}&{0.5I} \\ \star &{ - {{\tau }_{2}}\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \end{array}} \right] \prec 0. \\ \end{gathered} $$
(A.10)

Since \({{\left( {\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \right)}^{{ - 1}}} \succ 0\), by Proposition 1, the latter inequality holds if, for any β > 0,

$$\left[ {\begin{array}{*{20}{c}} { - K + (0.5{{\tau }_{1}} - \alpha )\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}}&{0.5I} \\ \star &{ - {{\tau }_{2}}\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}} \end{array}} \right] \preceq - \beta I \prec 0.$$
(A.11)

Due to condition (A.7), it is required to ensure \(\dot {V}\) < 0 for all ε from the set {ε ∈ \({{\mathbb{R}}^{m}}\) : |ε| \( \geqslant \) \(\sqrt {2c} \), c > 0}. In addition, for all ε from this set, we have an interval uncertainty in (A.11) with 0 \( \prec \) \(\frac{{\partial {{\Phi }^{{ - 1}}}(\varepsilon ,\;t)}}{{\partial \varepsilon }}\) \( \preceq \) \(\bar {\sigma }I\). Conditions (A.7) will be valid if the LMIs (15) are feasible for any σ ∈ (0, \(\bar {\sigma }\)]. Moreover, obviously, there always exist a matrix K and τ1, τ2 > 0 such that (15) are feasible. Indeed, using Schur’s complement lemma [13], we write (15) as

$$\begin{gathered} - {{\tau }_{2}}\sigma + \beta < 0, \\ - K + [(0.5{{\tau }_{1}} - \alpha )\sigma + \beta ]I + \frac{1}{{{{\tau }_{2}}\sigma - \beta }}I \preceq 0, \\ - c{{\tau }_{1}} + {{\kappa }^{2}}{{\tau }_{2}}\;\leqslant \;0, \\ {{\tau }_{1}} > 0,\quad {{\tau }_{2}} > 0, \\ \alpha > 0,\quad \beta > 0,\quad 0 < \sigma \;\leqslant \;\bar {\sigma }. \\ \end{gathered} $$
(A.12)

For a given number c > 0 and fixed numbers σ, α, and β, inequalities (A.12) always have finite solutions (K, τ1, τ2). Thus, according to Theorem 1, the control law (13) with the gain matrix K satisfying (15) ensures the target condition (3).

The proof of Theorem 3 is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, B.H. Output Stabilization of Lurie-Type Nonlinear Systems in a Given Set. Autom Remote Control 85, 33–45 (2024). https://doi.org/10.1134/S0005117924010065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117924010065

Keywords:

Navigation