Skip to main content
Log in

Jordan Canonical Form in Diagnosis and Estimation Problems

  • NONLINEAR SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose a method for solving diagnosis and estimation problems based on the Jordan canonical form. The problems of constructing diagnostic observers, virtual sensors, and interval and sliding-mode observers are considered. Algorithms for solving these problems are designed for both linear and nonlinear systems in the presence of exogenous disturbances and measurement noise. It is shown that in some cases, the use of the Jordan canonical form reduces the complexity of the observers and sensors and simplifies the procedure for their synthesis compared with the identification canonical form. This is illustrated by a practical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Mironovskii, L.A., Funktsional’noe diagnostirovanie dinamicheskikh sistem (Functional Diagnostics of Dynamical Systems), Moscow–St. Petersburg: MGU-GRIF, 1998.

    Google Scholar 

  2. Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York–London–Sydney–Toronto: Wiley-Interscience, 1972. Translated under the title: Lineinye optimal’nye sistemy upravleniya, Moscow: Mir, 1977.

    MATH  Google Scholar 

  3. Misawa, E.A. and Hedrick, J.K., Nonlinear observers—a state of the art survey, J. Dyn. Syst. Meas. Control, 1989, vol. 111, pp. 344–352.

    Article  MATH  Google Scholar 

  4. Zhirabok, A.N., Shumsky, A.E., and Pavlov, S.V., Diagnosis of linear dynamic systems by the nonparametric method, Autom. Remote Control, 2017, vol. 78, no. 7, pp. 1173–1188.

    Article  MathSciNet  MATH  Google Scholar 

  5. Efimov, D. and Raissi, T., Design of interval observers for uncertain dynamical systems, Autom. Remote Control, 2017, vol. 77, no. 2, pp. 191–225.

  6. Kolesov, N., Gruzlikov, A., and Lukoyanov, E., Using fuzzy interacting observers for fault diagnosis in systems with parametric uncertainty, Proc. XII Int. Symp. Intell. Syst. INTELS’16 (Moscow, October 5–7, 2016), pp. 499–504.

  7. Zhirabok, A.N., Error self-correction in discrete dynamical systems, Autom. Remote Control, 2006, no. 6, pp. 936–948.

  8. Zhirabok, A.N., Zuev, A.V., and Shumsky, A.E., Diagnosis of linear dynamic systems: an approach based on sliding mode observers, Autom. Remote Control, 2020, vol. 81, no. 2, pp. 211–225.

    Article  MathSciNet  MATH  Google Scholar 

  9. Lancaster, P., Theory of matrices, New York–London: Academic Press, 1969. Translated under the title: Teoriya matrits, Moscow: Nauka, 1978.

    MATH  Google Scholar 

  10. Blanke, M., Kinnaert, M., Lunze, J., and Staroswiecki, M., Diagnosis and Fault-Tolerant Control, Berlin: Springer-Verlag, 2006.

    MATH  Google Scholar 

  11. Witczak, M., Fault Diagnosis and Fault Tolerant Control Strategies for Nonlinear Systems, Berlin: Springer, 2014.

    Book  MATH  Google Scholar 

  12. Ahmed, Q., Bhatti, A., and Iqbal, M., Virtual sensors for automotive engine sensors fault diagnosis in second-order sliding modes, IEEE Sensors J., 2011, vol. 11, pp. 1832–1840.

    Article  Google Scholar 

  13. Heredia, G. and Ollero, A., Virtual sensor for failure detection, identification and recovery in the transition phase of a morphing aircraft, Sensors, 2010, vol. 10, pp. 2188–2201.

    Article  Google Scholar 

  14. Hosseinpoor, Z., Arefi, M., Razavi-Far, R., Mozafari, N., and Hazbavi, S., Virtual sensors for fault diagnosis: a case of induction motor broken rotor bar, IEEE Sensors J., 2021, vol. 21, pp. 5044–5051.

    Article  Google Scholar 

  15. Zhirabok, A.N. and Kim Chkhun Ir, Virtual sensors for the functional diagnosis of nonlinear systems, J. Comput. Syst. Sci. Int., 2022, vol. 61, pp. 38–46.

    Article  MathSciNet  MATH  Google Scholar 

  16. Efimov, D., Perruquetti, W., Raissi, T., and Zolghadri, A., Interval observers for time-varying discrete-time systems, IEEE Trans. Autom. Control, 2013, vol. 58, pp. 3218–3224.

    Article  MathSciNet  MATH  Google Scholar 

  17. Efimov, D., Polyakov, A., and Richard, J., Interval observer for estimation and control of time-delay descriptor systems, Eur. J. Control, 2015, vol. 23, pp. 26–35.

    Article  MathSciNet  MATH  Google Scholar 

  18. Khan, A., Xie, W., Zhang, L., and Liu, L., Design and applications of interval observers for uncertain dynamical systems, IET Circuits Devices Syst., 2020, vol. 14, pp. 721–740.

    Article  Google Scholar 

  19. Utkin, V.I., Skol’zyashchie rezhimy i ikh primenenie v sistemakh s peremennoi strukturoi (Sliding Modes and Their Application in Variable Structure Systems), Moscow: Nauka, 1974.

    Google Scholar 

  20. Krasnova, S.A. and Utkin, V.A., Kaskadnyi sintez nablyudatelei sostoyaniya dinamicheskikh sistem (Cascade Synthesis of State Observers of Dynamical Systems), Moscow: Nauka, 2006.

    Google Scholar 

  21. Edwards, C., Spurgeon, S., and Patton, R., Sliding mode observers for fault detection and isolation, Automatica, 2000, vol. 36, pp. 541–553.

    Article  MathSciNet  MATH  Google Scholar 

  22. Fridman, L., Levant, A., and Davila, J., Observation of linear systems with unknown inputs via high order sliding-modes, Int. J. Syst. Sci., 2007, vol. 38, pp. 773–791.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yan, X. and Edwards, C., Nonlinear robust fault reconstruction and estimation using a sliding modes observer, Automatica, 2007, vol. 43, pp. 1605–1614.

    Article  MathSciNet  MATH  Google Scholar 

  24. Shtessel, Yu., Edwards, C., Fridman, L., and Levant, A., Sliding Mode Control and Observation, New York: Springer, 2014.

    Book  Google Scholar 

  25. Wang, X., Tan, C., and Zhou, D., A novel sliding mode observer for state and fault estimation in systems not satisfying matching and minimum phase conditions, Automatica, 2017, vol. 79, pp. 290–295.

    Article  MathSciNet  MATH  Google Scholar 

  26. Emel’yanov, S.V., Sistemy avtomaticheskogo upravleniya s peremennoi strukturoi (Automatic Control Systems with Variable Structure), Moscow: Nauka, 1967.

    Google Scholar 

  27. Zhirabok, A.N., Zuev, A.V., Sergiyenko, O., and Shumsky, A.E., Identification of faults in nonlinear dynamical systems and their sensors based on sliding mode observers, Autom. Remote Control, 2022, vol. 83, no. 2, pp. 214–236.

    Article  MathSciNet  MATH  Google Scholar 

  28. Castillo, I., Fridman, L., and Moreno, J., Super-twisting algorithm in presence of time and state dependent perturbations, Int. J. Control, 2018, vol. 91, pp. 2535–2548.

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhirabok, A., Zuev, A., Filaretov, V., and Shumsky, A., Sliding mode observers for fault identification in linear systems not satisfying matching and minimum phase conditions, Arch. Control Sci., 2021, vol. 31, no. 2, pp. 253–266.

    MathSciNet  MATH  Google Scholar 

  30. Zhirabok, A.N., Shumskii, A.E., Solyanik, S.P., and Suvorov, A.Yu., Design of nonlinear robust diagnostic observers, Autom. Remote Control, 2017, vol. 78, no. 9, pp. 1572–1584.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-29-01303.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Zhirabok, A. V. Zuev, V. F. Filaretov, A. E. Shumsky or Kim Chkhun Ir.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhirabok, A.N., Zuev, A.V., Filaretov, V.F. et al. Jordan Canonical Form in Diagnosis and Estimation Problems. Autom Remote Control 83, 1355–1370 (2022). https://doi.org/10.1134/S0005117922090028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117922090028

Keywords

Navigation