Skip to main content
Log in

Suppression of Vertical Plasma Displacements by Control System of Plasma Unstable Vertical Position in D-Shaped Tokamak

  • ROBUST, ADAPTIVE AND NETWORK CONTROL
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Ensuring the stability of the vertical position of plasma is a paramount task of magnetic control for modern D-shaped tokamaks. The introduction of an additional horizontal field coil located near the vacuum vessel provides more than an order of magnitude larger vertical controllability domain than the use of a pair of P6&P12 poloidal field coils in the IGNITOR tokamak project. Two robust systems for controlling the vertical position of plasma are synthesized by the \( H_\infty \)-optimization theory method and by tuning PID controllers in a cascade system by the method of linear matrix inequalities. The results of mathematical modeling of control systems show that the modernization of the poloidal system of the IGNITOR tokamak project leads to an increase in the stability margin of the plasma vertical position control system, the quality of control when rejecting disturbances, and the reliability of the tokamak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Wesson, J., Tokamaks, Oxford: Clarendon, 2004.

  2. Mitrishkin, Yu.V., Kartsev, N.M., Kuznetsov, E.A., and Korostelev, A.Ya., Metody i sistemy magnitnogo upravleniya plazmoi v tokamakakh (Methods and Systems of Magnetic Plasma Control in Tokamaks), Moscow: KRASAND, 2020.

  3. Ariola, M. and Pironti, A., Magnetic Control of Tokamak Plasmas, Berlin: Springer, 2016. https://doi.org/10.1007/978-3-319-29890-0

  4. Skogestad, S. and Postlethwaite, I., Multivariable Feedback Control, Chichester: John Wiley & Sons, 2005.

  5. Mitrishkin, Yu.V., Korenev, P.S., Prokhorov, A.A., Kartsev, N.M., and Patrov, M.I., Plasma control in tokamaks. Part 1. Controlled thermonuclear fusion problem. Tokamaks. Components of control systems, Adv. Syst. Sci. Appl., 2018, vol. 18, no. 2, pp. 26–52. https://doi.org/10.25728/assa.2018.18.2.598

    Article  Google Scholar 

  6. Mitrishkin, Yu.V., Kartsev, N.M., Pavlova, E.A., Prokhorov, A.A., Korenev, P.S., and Patrov, M.I., Plasma control in tokamaks. Part 2. Magnetic plasma control systems, Adv. Syst. Sci. Appl., 2018, vol. 18, no. 3, pp. 39–78.

    Google Scholar 

  7. Mitrishkin, Y., Kartsev, , N., Konkov, , A., and Patrov , M., Plasma control in tokamaks. Part 3.1. Plasma magnetic control systems in ITER, Adv. Syst. Sci. Appl., 2020, vol. 20, no. 2, pp. 82–97. https://doi.org/10.25728/assa.2020.20.2.892

  8. Mitrishkin, Y., Kartsev, N., Konkov, A., and Patrov, M., Plasma control in tokamaks. Part 3.2. Simulation and realization of plasma control systems in ITER and constructions of DEMO, Adv. Syst. Sci. Appl., 2020, vol. 20, no. 3, pp. 136–152. https://doi.org/10.25728/assa.2020.20.3.939

    Article  Google Scholar 

  9. Villone, F., Albanese, R., Ambrosino, G., et al., Strategies for the plasma position and shape control in Ignitor, Fusion Eng. Des., 2007, vol. 82, no. 5, pp. 1036–1044.

    Article  Google Scholar 

  10. Dokuka, V.N., Gostev, A.A., and Khairutdinov, R.R., and Khairutdinov, R.R., Calculation of voltages induced in poloidal field windings of the Ignitor tokamak during vertical plasma disruption, VANT. Termoyad. Sint., 2018, vol. 41, no. 3, pp. 93–104.

  11. Mitrishkin, Y.V., Korenev, P.S., and Konkov, A.E., New horizontal and vertical field coils with optimised location for robust decentralized plasma position control in the IGNITOR tokamak, Fusion Eng. Des., 2022, vol. 174, 112993, pp. 1–20. https://doi.org/10.1016/j.fusengdes.2021.112993

  12. Butkovskii, A.G., Fazovye portrety upravlyaemykh dinamicheskikh sistem (Phase Portraits of Controlled Dynamical Systems), Moscow: Nauka, 1985.

  13. McFarlane, D. and Glover, K., Robust Controller Design Using Normalized Coprime Factor Plant Description, vol. 138 of Lect. Notes Control Inf. Sci., Berlin: Springer-Verlag, 1989.

  14. McFarlane, D. and Glover, K., A loop shaping design procedure using \( H_\infty \) synthesis, IEEE Trans. Autom. Control, 1992, vol. 37, no. 6, pp. 759–769.

    Article  MathSciNet  Google Scholar 

  15. Boyd, S., Hast, M., and Astrom, K.J., MIMO PID tuning via iterated LMI restriction, Int. J. Robust Nonlinear Control, 2016, vol. 26, no. 8, pp. 1718–1731. https://doi.org/10.1002/rnc.3376

    Article  MathSciNet  MATH  Google Scholar 

  16. Stein, G., Respect the unstable, IEEE Control Syst., 2003, vol. 23, no. 4, pp. 12–25.

    Article  Google Scholar 

  17. Humphreys, D.A., Casper, T., Eidietis, N., Ferrara, M., et al., Experimental vertical stability studies for ITER performance and design, Nuclear Fusion, 2009, vol. 49, no. 11, 115003. https://doi.org/10.1088/0029-5515/49/11/115003

  18. Khalil, H.K., Nonlinear Systems, Upper Saddle River, NJ: Prentice Hall PRENTICE HALL. Translated under the title: Nelineinye sistemy, Moscow–Izhevsk: Regulyarnaya Khaoticheskaya Din. Inst. Komp’yut. Issled., 2009.

  19. Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob”ektami (Control of Finite-Dimensional Linear Plants), Moscow: Nauka, 1976.

    MATH  Google Scholar 

  20. Polyak, B.T., Optimization and control: mutual connections, online presentation at Conf. “Optimization Without Borders” (Sirius, July 12, 2021), 2021.

  21. Glover, K. and McFarlane, D., Robust stabilization of normalize coprime factor plant descriptions with \( H_\infty \) bounded uncertainty, IEEE Trans. Autom. Control, 1989, vol. 34, no. 8, pp. 821–830.

    Article  Google Scholar 

  22. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie sistemami pri vneshnikh vozmushcheniyakh. Tekhnika lineinykh matrichnykh neravenstv (Control of Systems under Exogenous Disturbances. Technique of Linear Matrix Inequalities), Moscow: LENAND, 2014.

    Google Scholar 

  23. Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., State-space solutions to standard \( H_{2} \)- and \( H_\infty \)-control problems, IEEE Trans. Autom. Control, 1989, vol. 34, no. 8, pp. 831–847.

    Article  Google Scholar 

  24. Wang, L., PID Control System Design and Automatic Tuning using Matlab/Simulink, Chichester: John Wiley & Sons, 2020.

  25. Phillips, C.L. and Harbor, R.D., Feedback Control Systems, Upper Saddle River, NJ: Prentice Hall, 2000. Translated under the title: Sistemy upravleniya s obratnoi svyaz’yu, Moscow: Lab. Bazovykh Znanii, 2001.

    MATH  Google Scholar 

  26. Mitrishkin, Yu.V., Kartsev, N.S., and Zenkov, S.M., Stabilization of unstable vertical position of plasma in T-15 tokamak. I, Autom. Remote Control, 2014, vol. 75, no. 2, pp. 281–293.

    Article  Google Scholar 

  27. Mitrishkin, Yu.V., Kartsev, N.S., and Zenkov, S.M., Stabilization of unstable vertical position of plasma in T-15 tokamak. II, Autom. Remote Control, 2014, vol. 75, no. 9, pp. 1565–1576.

    Article  Google Scholar 

  28. Mitrishkin, Y.V, Pavlova, E.A., Kuznetsov, E.A., and Gaydamaka, K.I., Continuous, saturation, and discontinuous tokamak plasma vertical position control systems, Fusion Eng. Des., 2016, vol. 108, pp. 35–47. https://doi.org/10.1016/j.fusengdes.2016.04.026

    Article  Google Scholar 

  29. Konkov, A.E., Mitrishkin, Y.V., Korenev, P.S., and Patrov, M.I., Robust cascade LMI design of MIMO control system for plasma position, current, and shape model with time-varying parameters in a tokamak, IFAC-PapersOnLine, 2020, vol. 53, no. 2, pp. 7344–7349.

    Article  Google Scholar 

  30. Duan, G. and Yu, H., LMIs in Control Systems. Analysis, Design and Applications, Boca Raton: CRC Press, 2013.

  31. Lipp, T. and Boyd, S., Variations and extensions of the convex-concave procedure, Optim. Eng., 2014, vol. 17, no. 2, pp. 263–287.

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the employees of SSC RF “Troitsk Institute of Innovative and Thermonuclear Research” (TRINITY) Doctor (Phys.-Math.) Sciences N.B. Rodionov and Cand. (Phys.-Math.) Sciences V.N. Dokuka for useful discussions and data provided on the IGNITOR tokamak.

Funding

This work was supported by the Russian Science Foundation,project no. 21-79-20180, the Russian Foundation for Basic Research, project no. 19-31-90136, and was also partially funded by SSC RF TRINITY (Troitsk).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Mitrishkin, P. S. Korenev, A. E. Konkov or N. M. Kartsev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrishkin, Y.V., Korenev, P.S., Konkov, A.E. et al. Suppression of Vertical Plasma Displacements by Control System of Plasma Unstable Vertical Position in D-Shaped Tokamak. Autom Remote Control 83, 579–599 (2022). https://doi.org/10.1134/S0005117922040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117922040051

Keywords

Navigation