Skip to main content
Log in

Controlling the Heating of a Rod Using the Current and Preceding Time Feedback

  • CONTROL IN TECHNICAL SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Using the process of heating a rod in a furnace as an example, we study the feedback control synthesis problem for plants with distributed parameters. To form the control values, it is proposed to use their linear dependence on the state values at the points of measurement, both at the current and at the preceding moments of time. The unknown coefficients involved in this dependence of the control on the measured state values are the feedback parameters. They are determined by minimizing the objective functional using first-order numerical optimization methods. To this end, formulas for the gradient of the objective functional with respect to the feedback parameters are obtained. The results of numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Egorov, A.I., Osnovy teorii upravleniya (Fundamentals of Control Theory), Moscow: Fizmatlit, 2004.

    Google Scholar 

  2. Mitkowski, W., Bauer, W., and Zagórowska, M., Discrete-time feedback stabilization, Arch. Control Sci., 2017, vol. 27, no. 1, pp. 309–321.

  3. Bryson, A.E., Jr. and Ho You-Chi, Applied Optimal Control, Waltham, MA–Toronto–London: Blaisdell, 1969. Translated under the title: Prikladnaya teoriya optimal’nogo upravleniya, Moscow: Mir, 1972.

    Google Scholar 

  4. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2001.

    Google Scholar 

  5. Butkovskii, A.G., Metody upravleniya sistemami s raspredelennymi parametrami (Methods for Controlling Systems with Distributed Parameters), Moscow: Nauka, 1984.

    Google Scholar 

  6. Aida-zade, K.R. and Abdullayev, V.M., Control synthesis for temperature maintaining process in a heat supply problem, Cybern. Syst. Anal., 2020, vol. 56, no. 3, pp. 380–391.

    Article  Google Scholar 

  7. Polyak, B.T., Khlebnikov, M.V., and Rapoport, L.B., Matematicheskaya teoriya avtomaticheskogo upravleniya (Mathematical Automatic Control Theory), Moscow: Lenand, 2019.

    Google Scholar 

  8. Afifi, L., Lasri, K., Joundi, M., and Amimi, N., Feedback controls for exact remediability in disturbed dynamical systems, IMA J. Math. Control Inf., 2018, vol. 35, no. 1, pp. 411–425.

    MathSciNet  MATH  Google Scholar 

  9. Coron, J.M. and Wang, Zh., Output feedback stabilization for a scalar conservation law with a nonlocal velocity, SIAM J. Math. Anal., 2012, vol. 45, no. 5, pp. 2646–2665.

    Article  MathSciNet  Google Scholar 

  10. Aida-zade, K.R. and Abdullayev, V.M., Optimizing placement of the control points at synthesis of the heating process control, Autom. Remote Control, 2017, vol. 78, no. 9, pp. 1585–1599.

    Article  MathSciNet  Google Scholar 

  11. Aida-zade, K.R. and Abdullaev, V.M., On an approach to designing control of the distributed-parameter processes, Autom. Remote Control, 2012, vol. 73, no. 2, pp. 1443–1455.

    Article  MathSciNet  Google Scholar 

  12. Sirazetdinov, T.K., Optimizatsiya sistem s raspredelennymi parametrami (Optimizing Systems with Distributed Parameters), Moscow: Nauka, 1977.

    Google Scholar 

  13. Ray, W.H., Advanced Process Control, New York: McGraw-Hill, 1981.

    Google Scholar 

  14. El’sgol’ts, L.E. and Norkin, S.B., Vvedenie v teoriyu differentsial’nykh uravnenii s otklonyayushchimsya argumentom (Introduction to the Theory of Differential Equations with Deviating Argument), Moscow: Nauka, 1971.

    Google Scholar 

  15. Nakhushev, A.M., Nagruzhennye uravneniya i ikh primenenie (Loaded Equations and Applications), Moscow: Nauka, 2012.

    Google Scholar 

  16. Alikhanov, A.A, Berezkov, A.M., and Shkhanukov–Lafishev, M.Kh., Boundary value problems for certain classes of loaded differential equations and solving them by finite difference methods, Comput. Math. Math. Phys., 2008, vol. 48, no. 9, pp. 1619–1628.

    Article  MathSciNet  Google Scholar 

  17. Abdullayev, V.M. and Aida-zade, K.R., Finite-difference methods for solving loaded parabolic equation, Comput. Math. Math. Phys., 2016, vol. 56, no. 1, pp. 93–105.

    Article  MathSciNet  Google Scholar 

  18. Abdullaev, V.M. and Aida-zade, K.R., On the numerical solution of loaded systems of ordinary differential equations, Comput. Math. Math. Phys., 2004, vol. 44, no. 9, pp. 1505–1515.

    MathSciNet  Google Scholar 

  19. Abdullayev, V.M. and Aida-zade, K.R., Optimization of loading places and load response functions for stationary systems, Comput. Math. Math. Phys., 2017, vol. 57, no. 4, pp. 634–644.

    Article  MathSciNet  Google Scholar 

  20. Vasil’ev, F.P., Metody optimizatsii (Optimization Methods), Moscow: Faktorial Press, 2008.

    Google Scholar 

  21. Polyak, B.T., Vvedenie v optimizatsiyu (Introduction to Optimization), Moscow: Lenand, 2014.

    MATH  Google Scholar 

  22. Samarskii, A.A. and Nikolaev, E.S., Metody resheniya setochnykh uravnenii (Methods for Solving Grid Equations), Moscow: Nauka, 1978.

    Google Scholar 

  23. Abramov, A.A., On the transfer of boundary conditions for systems of linear ordinary differential equations (a variant of the sweep method), Zh. Vychisl. Mat. Mat. Fiz., 1961, vol. 1, no. 3, pp. 542–545.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. R. Aida-zade or V. M. Abdullayev.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aida-zade, K.R., Abdullayev, V.M. Controlling the Heating of a Rod Using the Current and Preceding Time Feedback. Autom Remote Control 83, 106–122 (2022). https://doi.org/10.1134/S0005117922010088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117922010088

Keywords

Navigation