Skip to main content
Log in

An Image Matching Method Using Heat Kernels on Graphs

  • THEMATIC ISSUE
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The paper presents an image matching method based on heat kernels. The method permits one to single out the most stable features of images at the initial stage using heat kernels on graphs for subsequent comparison. Popular descriptors can be used for this. When using the method, the number of false matches is considerably reduced compared with traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Krig, S., Computer Vision Metrics. Survey, Taxonomy, and Analysis, Berkeley: Apress, 2014.

    Book  MATH  Google Scholar 

  2. Ojala, T., Pietikainen, M., and Hardwood, D., A comparative study of texture measures with classification based on feature distributions, Pattern Recognit., 1996, vol. 29, no. 1, pp. 51–59. https://doi.org/10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  3. Calonder, M., Lepetit, V., Strecha, C., and Fua, P., BRIEF: Binary Robust Independent Elementary Features, in Computer Vision—ECCV 2010, vol. 6314 of Lecture Notes in Computer Science, Daniilidis, K., Maragos, P., and Paragios, N., Eds., Berlin–Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-15561-1_56

  4. Rublee, E., Rabaud, V., Konolige, K., and Bradski, G., ORB: An efficient alternative to SIFT or SURF, 2011 Int. Conf. Comput. Vis. (2011), pp. 2564-2571. https://doi.org/10.1109/ICCV.2011.6126544

  5. Leutenegger, S., Chli, M., and Siegwart, R., BRISK: Binary Robust Invariant Scalable Keypoints, 2011 Int. Conf. Comput. Vis. (2011), pp. 2548–2555. https://doi.org/10.1109/ICCV.2011.6126542

  6. Lowe, D.G., Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vis., 2004, vol. 60, no. 2, pp. 91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  7. Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L., SURF: Speeded Up Robust Features, Comput. Vis. Image Understand., 2008, vol. 110, no. 3, pp. 346–359. https://doi.org/10.1007/11744023_32

    Article  Google Scholar 

  8. Tola, E., Lepetit, V., and Fua, P., DAISY: An efficient dense descriptor applied to wide-baseline stereo, IEEE Trans. Pattern Anal. Mach. Intell., 2010, vol. 32, no. 5, pp. 815–830. https://doi.org/10.1109/TPAMI.2009.77

    Article  Google Scholar 

  9. Dalal, N. and Triggs, B., Histograms of oriented gradients for human detection, Comput. Vis. Pattern Recognit., 2005, vol. 1, pp. 886–893. https://doi.org/10.1109/CVPR.2005.177

    Article  Google Scholar 

  10. Scharstein, D. and Szeliski, R., A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, Int. J. Comput. Vis., 2002, no. 47, pp. 7–42. https://doi.org/10.1023/A:1014573219977

  11. Jun, B. and Kim, D., Robust face detection using local gradient patterns and evidence accumulation, Pattern Recognit., 2012, vol. 45, no. 9, pp. 3304–3316. https://doi.org/10.1016/j.patcog.2012.02.031

    Article  Google Scholar 

  12. Bracewell, R., The Fourier Transform and Its Applications, McGraw-Hill Sci./Eng./Math., 1999.

  13. Ren, X. and Ramanan, D., Histograms of sparse codes for object detection, Conf. Comput. Vis. Pattern Recognit. (2013). https://doi.org/10.1109/CVPR.2013.417

  14. Matas, J., Chum, O., Urba, M., and Pajdla, T., Robust wide baseline stereo from maximally stable extremal regions, Proc. Br. Mach. Vis. Conf. (2002). https://doi.org/10.1016/j.imavis.2004.02.006

  15. Yang, M., Kpalma, K., and Ronsin, J., A survey of shape feature extraction techniques, Pattern Recognit., 2008, pp. 43–90. https://doi.org/10.5772/6237

  16. Szeliski, R., Computer Vision: Algorithms and Applications, Heidelberg: Springer, 2010.

    MATH  Google Scholar 

  17. Ufer, N. and Ommer, B., Deep semantic feature matching, 2017 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) (2017), pp. 5929–5938. https://doi.org/10.1109/CVPR.2017.628

  18. Gao, Q., Wang, F., Xue, N., Yu, J.G., and Xia, G.S., Deep graph matching under quadratic constraint, 2021 IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR) (2021), pp. 5067–5074. https://doi.org/10.1109/CVPR46437.2021.00503

  19. Scott, G. and Longuet-Higgins, H., An algorithm for associating the features of two images, Proc. R. Soc., 1991, vol. 244, pp. 21–26. https://doi.org/10.1098/rspb.1991.0045

    Article  Google Scholar 

  20. Zakharov, A.A., Zhiznyakov, A.L., and Titov, V.S., A method for feature matching in images using descriptor structures, Comput. Opt., 2019, vol. 43, no. 5, pp. 811–818. https://doi.org/10.18287/2412-6179-2019-43-5-811-818

    Article  Google Scholar 

  21. Shapiro, L.S. and Brady, J.M., Feature-based correspondence—an eigenvector approach, Image Vis. Comput., 1992, vol. 10, no. 5, pp. 283–288. https://doi.org/10.1016/0262-8856(92)90043-3

    Article  Google Scholar 

  22. Carcassoni, M. and Hancock, E., Spectral correspondence for point pattern matching, Pattern Recognit., 2003, vol. 36, no. 1, pp. 193–204. https://doi.org/10.1016/S0031-3203(02)00054-7

    Article  MATH  Google Scholar 

  23. Leordeanu, M. and Hebert, M., A spectral technique for correspondence problems using pairwise constraints, Tenth IEEE Int. Conf. Comput. Vis. 2005, vol. 1. https://doi.org/10.1109/ICCV.2005.20

  24. Cour, T., Srinivasan, P., and Shi, J., Balanced graph matching, Proc. Conf. Neural Inf. Process. Syst. (2006). https://doi.org/10.7551/mitpress/7503.003.0044

  25. Delponte, E., Isgro, F., Odone, F., and Verri, A., SVD-matching using SIFT features, Graphical Models, 2006, vol. 68, no. 5–6, pp. 415–431. https://doi.org/10.1016/j.gmod.2006.07.002

    Article  Google Scholar 

  26. Chung, F.R.K., Spectral Graph Theory, Providence: Am. Math. Soc., 1997.

    MATH  Google Scholar 

  27. Zakharov, A.A., Titov, D.V., Zhiznyakov, A.L., and Titov, V.S., Visual attention method based on vertex ranking of graphs by heterogeneous image attributes, Comput. Opt., 2020, vol. 44, no. 3, pp. 427–435. https://doi.org/10.18287/2412-6179-CO-658

    Article  Google Scholar 

  28. Zakharov, A.A., Barinov, A.E., Zhiznyakov, A.L., and Titov, V.S., Object detection in images with a structural descriptor based on graphs, Comput. Opt., 2018, vol. 42, no. 2, pp. 283–290. https://doi.org/10.18287/2412-6179-2018-42-2-283-290

    Article  Google Scholar 

  29. Zakharov, A., Barinov, A., and Zhiznyakov, A., Faces selection in images using the spectral graph theory and constraints, 2017 Int. Conf. Ind. Eng. Appl. Manuf. (2017). https://doi.org/10.1109/ICIEAM.2017.8076407

  30. Zakharov, A., Tuzhilkin, A., and Zhiznyakov, A., Automatic building detection from satellite images using spectral graph theory, Int. Conf. Mech. Eng. Autom. Control Syst. (MEACS) (2015). https://doi.org/10.1109/MEACS.2015.7414937

  31. Bai, X., Wilson, R.C., and Hancock, E.R., Characterising graphs using the heat kernel, Br. Mach. Vis. Conf. (2005), pp. 315–324. https://doi.org/10.5244/C.19.92

  32. Ghawalby, H. and Hancock, E.R., Heat kernel embeddings, differential geometry and graph structure, Axioms, 2015, vol. 4, pp. 275–293. https://doi.org/10.3390/axioms4030275

    Article  MATH  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation, state order no. GB-1187/20 for Vladimir State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zakharov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, A.A. An Image Matching Method Using Heat Kernels on Graphs. Autom Remote Control 83, 1538–1543 (2022). https://doi.org/10.1134/S0005117922010006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117922010006X

Keywords

Navigation