Skip to main content
Log in

Separation Theorem for Average Optimal Control for Hybrid Systems of Variable Dimension

  • topical issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the problem of average optimal control for a linear hybrid system whose continuous motion alternates with discrete changes (switchings) that change the state space. The initial system state is random. The control quality is characterized by the mean value of a quadratic functional. Switching times and their number are not known in advance. They are determined by minimizing the functional. For the problem under consideration, the classical separation principle does not hold. We prove the so-called conditional separation principle. We also show sample applications of conditional and classical separation principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ovsyannikov, D. A. Matematicheskie metody upravleniya puchkami (Mathematical Methods for Bundle Control). (Leningr. Gos. Univ, Leningrad, 1980).

    Google Scholar 

  2. Kurzhanskii, A. B. Upravlenie i nablyudenie v usloviyakh neopredelennosti (Control and Observation under Uncertainty). (Nauka, Moscow, 1977).

    Google Scholar 

  3. Bortakovskii, A. S. Optimal and Suboptimal Controls for Bundles of Trajectories for Deterministic Continuous-Discrete Systems. Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen. no. 1, 18–33 (2009).

    MathSciNet  Google Scholar 

  4. Bortakovskii, A. S. & Nemychenkov, G. I. Average Optimal Control for Deterministic Switching Systems under Discrete Imprecise Observations. Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen. no. 1, 52–77 (2019).

    Google Scholar 

  5. Bortakovskii, A.S.The Separation Theorem in Control Problems for Bundles of Trajectories of Deterministic Linear Switching Systems, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2020, no. 2, pp. 37–63.

  6. Velichenko, V. V. Optimal Control of Composite Systems. Dokl. Akad. Nauk SSSR 176(no. 4), 754–756 (1967).

    MathSciNet  MATH  Google Scholar 

  7. Medvedev, V. A. & Rozova, V. N. Optimal Control of Incremental Systems, Autom. Remote Control 33(no. 3), 359–366 (1972).

    MATH  Google Scholar 

  8. Boltyanskii, V. G. Optimization Problem with a Change of the Phase Space. Differ. Uravn. 19(no. 3), 518–521 (1983).

    Google Scholar 

  9. Gurman, V. I. Printsip rasshireniya v zadachakh upravleniya (The Extension Principle in Control Problems). (Nauka, Moscow, 1985).

    MATH  Google Scholar 

  10. Emel’yanov, S. V., Utkin, V. I. & Taran, V. A. et al. Teoriya sistem s peremennoi strukturoi (Theory of Systems with Variable Structure). (Nauka, Moscow, 1970).

    Google Scholar 

  11. Kirillov, A. N. Dynamic Systems with Variable Structure and Dimension. Izv. Vyssh. Uchebn. Zaved., Ser. Priborostroenie 52(no. 3), 23–28 (2009).

    Google Scholar 

  12. Sussmann, H.J.A Maximum Principle for Hybrid Optimal Control Problems, Proc. 38th IEEE Conf. on Decision and Control, Phoenix, 1999.

  13. Dmitruk, A. V. & Kaganovich, A. M. The Hybrid Maximum Principle is a Consequence of Pontryagin Maximum Principle. Syst. Control Lett. 57, 964–970 (2008).

    Article  MathSciNet  Google Scholar 

  14. Miller, B. M. & Rubinovich, E. Ya Optimizatsiya dinamicheskikh sistem s impulasnymi upravleniyami (Optimization of Dynamical Systems with Impulse Controls). (Nauka, Moscow, 2005).

    Google Scholar 

  15. Bortakovskii, A. S. Synthesis of Optimal Control Systems with a Change in the Models of Motion. Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen. no. 4, 57–74 (2018).

    Google Scholar 

  16. Bortakovskii, A. S. Sufficient Optimality Conditions for Hybrid Systems of Variable Dimension. Tr. MIAN 308(no. 2), 88–100 (2020).

    Article  MathSciNet  Google Scholar 

  17. Bortakovskii, A. S. & Uryupin, I. V. Minimizing the Number of Switchings in Optimal Continuous-Discrete Controllable Processes. Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen. no. 4, 29–46 (2019).

    MATH  Google Scholar 

  18. Letov, A. M. Dinamika poleta i upravlenie (Flight Dynamics and Control). (Nauka, Moscow, 1973).

    Google Scholar 

  19. Wonham, W. M. On the Separation Theorem of Stochastic Control. SIAM J. Control 6, 312–326 (1968).

    Article  MathSciNet  Google Scholar 

  20. Lee, E. B. & Markus, L. Foundations of Optimal Control Theory. (Wiley, New York, 1967). Translated under the title Osnovy teorii optimal’nogo upravleniya, Moscow: Nauka, 1972.

    MATH  Google Scholar 

  21. Ovsyannikov, D. A. Modelirovanie i optimizatsiya dinamiki puchkov zaryazhennykh chastits (Modeling and Optimization of the Dynamics of Bundles of Charged Particles). (Leningr. Gos. Univ., Leningrad, 1990).

    MATH  Google Scholar 

  22. Bellman, R. Dynamic Programming. (Princeton Univ. Press, Princeton, 1957). Translated under the title Dinamicheskoe programmirovanie, Moscow: Inostrannaya Literatura, 1960.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bortakovskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortakovskii, A. Separation Theorem for Average Optimal Control for Hybrid Systems of Variable Dimension. Autom Remote Control 81, 1974–1993 (2020). https://doi.org/10.1134/S000511792011003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511792011003X

Keywords

Navigation