Skip to main content
Log in

Intelligent Control Systems and Fuzzy Controllers. II. Trained Fuzzy Controllers, Fuzzy PID Controllers

  • Sensors and Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The problems of control systems intellectualization are observed. The necessity of intellectualization of a wide range of systems and control methods is proved. The hierarchy of levels of intellectual control observed and comparison analysis of different artificial intelligence devices given. Importance of target setting’s automation problems’ solving in control systems is pointed out, as well as intellectualization of anthropocentric systems, including the ones based on fuzzy logic and case-based reasoning. The logical-linguistic, analytical, learned and PID fuzzy controllers are considered, based on fuzzy logics of Zadeh. An overview of the Mamdani-type controllers, controllers based on TS-model and the ANFIS architecture, using neural network structure is provided. The conditions of optimality and stability of control systems with Mamdani fuzzy controllers are analyzed. The Sugeno dynamic models and the ANFIS adaptive models and the methods of learning developed on the basis of fuzzy controllers are considered. The structure of a Mamdani fuzzy controller and its implementation by means of the Simulink is described. An example of application of Simulink to determine the optimal parameters of a fuzzy controller is shown. The examples of the fuzzy controllers use are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vassilyev, S.N., Kudinov, Yu.I., Pashchenko, F.F., et al., Intelligent Control Systems and Fuzzy Controllers. I. Fuzzy Models, Logical-Linguistic and Analytical Regulators, Autom. Remote Control, 2020, vol. 81, no. 1, pp. 171–191.

    Article  Google Scholar 

  2. Pupkov, K.A., Some Results of Development of Scientific-Technical Program “Intellectual Systems” of FKP “Universities of Russia,” Proc. 2nd Int. Symp. “Intellectual Systems” (INTELS’96), 1996, vol. 1, pp. 5–9.

    Google Scholar 

  3. Russell, S.J. and Norvig, P., Artificial Intelligence: A Modern Approach, Upper Saddle River: Prentice Hall, 1995.

    MATH  Google Scholar 

  4. Takagi, H. and Hayashi, I., NN-Driven Fuzzy Reasoning, Int. J. Appr. Reasoning, 1991, no. 5, pp. 191–212.

    Google Scholar 

  5. Yager, R.R., Implementing Fuzzy logic Controllers using a Neural Network framework, Fuzzy Sets Syst., 1992, no. 48, pp. 53–64.

    Google Scholar 

  6. Bukcley, J.J. and Hayashi, I., Neural Nets for Fuzzy Systems, Fuzzy Sets Syst., 1995, no. 71, pp. 265–276.

    Google Scholar 

  7. Lin, C.T. and Lee, C.S.G., Neural-network-based Fuzzy Logic Control and Decision System, IEEE Trans. Comput., 1991, vol. 40, no. 12, pp. 1320–1336.

    Article  MathSciNet  MATH  Google Scholar 

  8. Jang, J.-S.R., ANFIS Adaptive-network-based Fuzzy System, IEEE Trans. Systems Man Cybernet., 1993, vol. 23, no. 6, pp. 665–685.

    Article  Google Scholar 

  9. Bukcley, J.J., Hayashi, I., and Czogala, E., Fuzzy Neural Controller, Proc. IEEE Int. Conf. on Fuzzy Systems, San Diego, 1992, pp. 197–202.

    Google Scholar 

  10. Tang, J.R. and Sun, C., Neuro-Fuzzy Modeling and Control, Proc. IEEE, 1995, vol. 83, no. 3, pp. 378–406.

    Article  Google Scholar 

  11. Shi, Y., Mizumoto, M., Yubazaki, N., and Otani, M., A Method of Fuzzy Rules Generation based on Neuro-fuzzy Learning Algorithm, J. Japan Soc. Fuzzy Theory Syst., 1996, vol. 8, no. 4, pp. 695–705.

    Article  Google Scholar 

  12. Juang, C.F. and Lin, C.-T., An On-Line Self-Constructing Neural Fuzzy Inference Network and Its Applications, IEEE Trans. Fuzzy Syst., 1998, vol. 5, no. 1, pp. 12–32.

    Article  Google Scholar 

  13. Ishigami, H., Fukuda, T., Shibata, T., and Arai, F., Structure Optimization of Fuzzy Neural Network by Genetic Algorithm, Fuzzy Sets Syst., 1995, no. 71, pp. 257–264.

    Google Scholar 

  14. Francisco, H. and Luis, M., Genetic Fuzzy Systems, Tatra Mount. Math. Publ., 1997, no. 13, pp. 93–121.

    Google Scholar 

  15. Chin, T.C., Genetic Algorithms for Learning the Rule Base of Fuzzy logic Controller, Fuzzy Sets Syst., 1998, no. 97, pp. 1–7.

    Google Scholar 

  16. Juang, C.-F. and Lin, J.-Y., Genetic Reinforcement Learning through Symbiotic Evolution for Fuzzy Controller Design, IEEE Trans. Syst., Man Cybern., Part B, Cybern., 2000, vol. 30, no. 2, pp. 290–302.

    Article  Google Scholar 

  17. Rajapakse, A., Furuta, K., and Kondo, A., Evolutionary Learning of Fuzzy Logic Controllers and Their Adaptation through Perpetual Evolution, IEEE Trans. Fuzzy Syst., 2002, vol. 10, no. 3, pp. 309–321.

    Article  Google Scholar 

  18. Chen, C. and Wong, C.-C., Self-Generating Rule-Mapping Fuzzy Controller Design using a Genetic Algorithm, IEE Proc. Control Theory Appl., 2002, vol. 149, no. 2, pp. 143–148.

    Article  Google Scholar 

  19. Karr, C.L., Genetic Algorithms for Fuzzy Controllers, AI Expert, 1991, vol. 6, no. 1, pp. 26–33.

    Google Scholar 

  20. Karr, C.L. and Gentry, E., Fuzzy Control of PH using Genetic Algorithms, IEEE Trans. Fuzzy Syst., 1993, vol. 1, no. 1.

    Google Scholar 

  21. Linkens, D.A. and Nyongesa, H.O., Genetic Algorithms for Fuzzy Control, IEE Proc. Control Theory Appl., 1995, vol. 142, no. 3, part 1, pp. 161–176, part 2, pp. 177–185.

    Article  MATH  Google Scholar 

  22. Kudinov, Y.I., Chalov, E.A., Kudinov, I.U., et al., The Development of a Fuzzy Learning Control System, Promyshl. ASU Kontroller., 2004, no. 2, pp. 25–29.

    Google Scholar 

  23. Patel, A.V. and Mohan, B.M., Analytical Structures and Analysis of the Simplest Fuzzy PI Controllers, Automatica, 2002, vol. 38, pp. 981–993.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ying, H., Fuzzy Control and Modeling, New York: IEEE, 2000.

    Book  Google Scholar 

  25. Passino, K.M. and Yurkovich, S., Fuzzy Control, New York: Addison Wesley, 1998.

    MATH  Google Scholar 

  26. Mann, G.K.I., Hu, B.-G., and Gosine, R.G., Analysis of Direct Action Fuzzy PID Controller Structures, IEEE Trans. Syst., Man, Cybern., Part B, 1999, vol. 29, no. 3, pp. 371–388.

    Article  Google Scholar 

  27. Johnson, M.A. and Moradi, M.H., Fuzzy PID Control: New Identification and Design Methods, London: Springer-Verlag, 2005.

    Book  Google Scholar 

  28. Jantzen, J., Foundations of Fuzzy Control, New York: Wiley, 2007.

    Book  Google Scholar 

  29. Ding, Y., Ying, H., and Shao, S., Typical Takagi–Sugeno PI and PD Fuzzy Controllers: Analytical Atructures and Stability Analysis, Inform. Sci., 2003, vol. 151, pp. 245–262.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kumar, V. and Mittal, A.P., Parallel Fuzzy P + Fuzzy I + Fuzzy D Controller: Design and Performance Evaluation, Int. J. Automat. Comput., 2010, vol. 7, no. 4, pp. 463–471.

    Article  Google Scholar 

  31. Fadaei, F., Shahbazian, M., Aghajani, M., and Jazayeri-Rad, H., A Novel Hybrid Fuzzy PID Controller Based on Cooperative Coevolutionary Genetic Algorithm, J. Basic. Appl. Sci. Res., 2013, vol. 3, no. 3, pp. 337–344.

    Google Scholar 

  32. Li, H.-X. and Tso, S.K., Quantitative Design Analysis of Fuzzy Proportional-Integral-Derivative Control—A Step Towards Autotuning, Int. J. Sci., 2000, vol. 31, no. 5, pp. 545–553.

    MATH  Google Scholar 

  33. Kovacic, Z. and Bogdan, S., Fuzzy Controller Design. Theory and Applications, Arlington: Taylor and Francis, 2006.

    MATH  Google Scholar 

  34. Michels, K., Klawonn, F., Kruse, R., and Nürnberger, A., Fuzzy Control. Fundamentals, Stability and Design of Fuzzy Controllers, Berlin: Springer-Verlag, 2006.

    MATH  Google Scholar 

  35. Vaishnav, S.R. and Khan, Z.J., Performance of Tuned PID Controller and a New Hybrid Fuzzy PD + I Controller, World J. Modeling Simulat., 2010, vol. 6, no. 2, pp. 141–149.

    Google Scholar 

  36. Kudinov, Y.I. and Kelina, A.Y., Simplified Method of Determining the Parameters of Fuzzy PID Controllers, Mekhatron., Avtomatiz., Upravlen., 2013, no. 1, pp. 12–22.

    Google Scholar 

  37. Rotach, V.Ya., Expert Evaluation of Control Algorithms by Methods of Fuzzy Logic and Probability Theory, Teploenergetika, 2002, no. 4, pp. 51–56.

    Google Scholar 

  38. Pivonka, P. and Drejl, M., Use of Fuzzy PID Controllers in Fuzzy Control of Coal Power Plants, Proc. Fuzzy–96, Zittau, Germany, 1996.

    Google Scholar 

  39. Guilamo, P.G., Fuzzy Control, Measurem. Control, October 1987.

    Google Scholar 

  40. Rotach, V.Ya., About Fazzi-PID-Regulators, Teploenergetika, 1999, no. 8, pp. 32–36.

    Google Scholar 

  41. Rotach, V.Ya., Is It Possible to Synthesize a Fuzzy Controller using the Fuzzy Sets Theory, Promyshl. ASU Kontroller., 2004, no. 1, pp. 33–34.

    Google Scholar 

  42. Prangishvili, I.V., Pashchenko, F.F., and Busygin, B.P., System Laws and Regularities in Electrodynamics, Nature and Society, Moscow: Nauka, 2001.

    Google Scholar 

  43. Zhang, J., Zhang, P., and Li, R., Analysis and Design of Fuzzy Controller based on Fuzzy Reaching Law, Proc. the 14th World Congress IFAC, Beijing, 1999, pp. 189–194.

    Google Scholar 

  44. Kudinov, Y.I., Kudinov, I.Y., Pashchenko, F.F., and Pashchenko, A.F., Program Complex for Identification of Fuzzy Models, Proc. the 25th Chinese Control and Decision Conference (CCDC-2013), Guigang, China, Piscataway, IEEE: USA, 2013, pp. 2492–2494.

    Chapter  Google Scholar 

  45. Pashchenko, F.F., Kudinov, I.Y., and Kudinov, Y.I., Identification of Multivariable Fuzzy Systems, Proc. the 2011 Chinese Control and Decision Conference (CCDC-2011), Mianyang, China, 2011, pp. 1572–1575.

    Google Scholar 

  46. Hu, B., Mann, G., and Gosine, R., How to Evaluate Fuzzy PID Controllers without Using Process Information, Proc. the 14th World Congress IFAC, Beijing, 1999, pp. 177–182.

    Google Scholar 

  47. Zhang, H., Chan, C., Chenng, K., and Ye, Y., Fuzzy Art Map Neural Network and Its Application to Fault Diagnosis of Navigation Systems, Automatica, 2001, vol. 37, pp. 1065–1070.

    Article  Google Scholar 

  48. Choi, H.H., Robust Stabilization of Uncertain Fuzzy Systems using Variable Structure System Approach, IEEE Trans. Fuzzy Syst., 2008, vol. 16, no. 3, pp. 715–724.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Vassilyev, Yu. I. Kudinov, F. F. Pashchenko, I. S. Durgaryan, A. Yu. Kelina, I. Yu. Kudinov or A. F. Pashchenko.

Additional information

Russian Text © The Author(s), 2017, published in Datchiki i Sistemy, 2017, No. 2, pp. 3–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vassilyev, S.N., Kudinov, Y.I., Pashchenko, F.F. et al. Intelligent Control Systems and Fuzzy Controllers. II. Trained Fuzzy Controllers, Fuzzy PID Controllers. Autom Remote Control 81, 922–934 (2020). https://doi.org/10.1134/S0005117920050112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920050112

Keywords

Navigation