Skip to main content
Log in

Design of Given Oscillation Index Scalar Controllers: Modal and H-Approaches

  • Control Sciences
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The algorithms of output controllers design are proposed for linear scalar plants, that ensure the desired or attainable values of oscillation index and of degree of stability, determining the settling time. Both modal control and H-approach are used in the design procedurevs. Examples are constructed, demonstrating that striving to provide the degree of stability that is much greater than the distance from the nearest left zero of the plant transfer function to the imaginary axis (even for the minimum phase plants) leads to the quite small gain and phase stability margins, that is unacceptable in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bode, H.W., Network Analysis and Feedback Amplifier Design, New York: Van Nostrand, 1945.

    Google Scholar 

  2. MacColl, L.A., Fundamental Theory of Servomechanisms, New York: Van Nostrand, 1945.

    MATH  Google Scholar 

  3. Hall, A.C., The Analysis and Synthesis of Linear Servomechanisms, Cambridge: MIT Press, 1943.

    Google Scholar 

  4. Solodovnikov, V.V., Application of the Method of Logarithmic Frequency Characteristics to the Study of Stability and to the Quality Assessment of Servo and Controlled Systems, Avtomat. Telemekh., 1948, vol. 9, no. 2, pp. 85–103.

    Google Scholar 

  5. Bessekerskii, V.A. and Fabrikant, E.A., Dinamicheskii sintez system giroskopicheskoi stabilizatsii (Dynamic Synthesis of Gyroscopic Stabilization Systems), Leningrad: Sudostroenie, 1968.

    Google Scholar 

  6. Bessekerskii, V.A. and Popov, E.P., Teoriya sistem avtomaticheskogo regulirovaniya (Theory of Automatic Control Systems), Moscow: Nauka, 1975.

    Google Scholar 

  7. Anderson, B.D.O., and Moore, J.B., Optimal Control. Linear Quadratic Methods, New York: Prentice Hall, 1989.

    Google Scholar 

  8. Åström, K.J. and Murray, R.M., Feedback Systems: An Introduction for Scientists and Engineers, New Jersey: Princeton Univ. Press, 2008.

    Book  Google Scholar 

  9. Chestnov, V.N., Design of Robust H-Controllers of Multivariable Systems Based on the Given Stability Degree, Autom. Remote Control, 2007, vol. 68, no. 3, pp. 557–563.

    Article  MathSciNet  Google Scholar 

  10. Horowitz, I.M., Synthesis of Feedback Systems, New York: Academic, 1963.

    MATH  Google Scholar 

  11. Aleksandrov, A.G., Controller Design in Precision and Speed. I. Minimal Phase One-Dimensional Plants, Autom. Remote Control, 2015, vol. 76, no. 5, pp. 749–761.

    Article  MathSciNet  Google Scholar 

  12. Aleksandrov, A.G., Design of Controllers by Indices of Precision and Speed. II. Nonminimal-Phase Plants, Autom. Remote Control, 2017, vol. 78, no. 6, pp. 961–973.

    Article  MathSciNet  Google Scholar 

  13. Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, New Jersey: Prentice-Hall, 1996.

    MATH  Google Scholar 

  14. Zhou, K. and Doyle, J.C., Essentials of Robust Control, New Jersey: Prentice-Hall, 1998.

    MATH  Google Scholar 

  15. Skogestad, S. and Postlethwaite, I., Multivariable Feedback Control. Analysis and Design, New York: Wiley, 2006.

    MATH  Google Scholar 

  16. Anderson, B.D.O. and Moore, J.B., Linear Optimal Control, New Jersey: Prentice-Hall, 1971.

    Book  Google Scholar 

  17. Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York: Wiley, 1972, 1st ed.

    MATH  Google Scholar 

  18. Kwakernaak, H. and Sivan, R., Translated under the title Lineinye optimal’nye sistemy upravleniya, Moscow: Mir, 1977.

    Google Scholar 

  19. Miroshnik, I.V., Teoriya avtomaticheskogo upravleniya. Lineinye sistemy (Automated Control Theory. Linear Systems), St. Petersburg: Piter, 2005.

    Google Scholar 

  20. Chestnov, V.N., Synthesizing H-Controllers for Multidimensional Systems with Given Accuracy and Degree of Stability, Autom. Remote Control, 2011, vol. 72, no. 10, pp. 2161–2175.

    Article  MathSciNet  Google Scholar 

  21. Doyle, J.C., Francis, B.A., and Tannenbaum, A.R., Feedback Control Theory, New York: Macmillan, 1990.

    Google Scholar 

  22. Åström, K. J. and Hägglund, T., Advanced PID Control, NC: ISA, 2006.

    Google Scholar 

  23. Gaiduk, A.R., Teoriya i metody analiticheskogo sinteza sistem avtomaticheskogo upravleniya (polinomial’nyi podkhod) (Theory and Methods of Analytical Design of Automatic Control Systems (A Polynomial Approach)), Moscow: Fizmatlit, 2012.

    Google Scholar 

  24. Sadomtsev, Yu.V., Solution of the H-Optimization Problems on the Basis of the Principle of Separation, Autom. Remote Control, 2012, vol. 73, no. 1, pp. 56–73.

    Article  MathSciNet  Google Scholar 

  25. Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., State-space Solution to Standard H2 and H Control Problem, IEEE Trans. Autom. Control, 1989, vol. 34, no. 8, pp. 831–846.

    Article  Google Scholar 

  26. Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequality in System and Control Theory, Philadelphia: SIAM, 1994.

    Book  Google Scholar 

  27. Gahinet, P. and Apkarian, P., A Linear Matrix Inequality Approach to H Control, Int. J. Robust Nonlin, Control, 1994, vol. 4, pp. 421–448.

    Article  MathSciNet  Google Scholar 

  28. Balas, G.J., Chiang, R.Y., Packard, A., and Safonov, M.G., Robust Control Toolbox 3. User’s Guide, Natick: The Math Works, 2010.

    Google Scholar 

Download references

Funding

This work was supported be the Russian Foundation for Basic Research, project no. 18-08-01067.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Chestnov or D. V. Shatov.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Russian Text © The Author(s), 2019, published in Problemy Upravleniya, 2019, No. 2, pp. 2–8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chestnov, V.N., Shatov, D.V. Design of Given Oscillation Index Scalar Controllers: Modal and H-Approaches. Autom Remote Control 81, 517–527 (2020). https://doi.org/10.1134/S0005117920030091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117920030091

Keywords

Navigation