Skip to main content
Log in

Variational Problems for Calibrating an Accelerometer Unit

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Within a guaranteeing approach to estimation, a new formalization of the accelerometer unit calibration problem is proposed. This problem is reduced to an analysis of special variational problems. Based on the new formalization, the scalarization method is justified; this method is widely used for calibrating accelerometer units. In particular, the limits of its applicability are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lidov, M.L., On Prior Estimation of Accuracy of Parameters Calculated by the Least Squares Method, Kosm. Issled., 1964, vol. 2, no. 5, pp. 4–715.

    Google Scholar 

  2. Krasovskii, N.N., On the Theory of Controllability and Observability of Linear Dynamic Systems, J. Appl. Math. Mech., 1964, vol. 2, no. 1, pp. 4–14.

    MathSciNet  Google Scholar 

  3. Krasovskii, N.N., Teoriya upravleniya dvizheniem (Theory of Motion Control), Moscow: Nauka, 1968.

    Google Scholar 

  4. Lidov, M.L., Minimax Estimation Methods, Preprint of Keldysh Inst. of Applied Mathematics, Russ. Acad. Sci., Moscow, 2010, no. 71.

    Google Scholar 

  5. Bakhshiyan, B.Ts., Nazirov, R.R., and El’yasberg, P.E., Opredelenie i korrektsiya dvizheniya (Determination and Correction of Motion), Moscow: Nauka, 1980.

    MATH  Google Scholar 

  6. Belousov, L.Yu., Otsenivanie parametrov dvizheniya kosmicheskikh apparatov (Estimation of Motion Parameters for Space Vehicles), Moscow: Fizmatlit, 2002.

    Google Scholar 

  7. Matasov, A.I., Metod garantiruyushchego otsenivaniya (Method of Guaranteeing Estimation), Moscow: Mosk. Gos. Univ., 2009.

    Google Scholar 

  8. Matasov, A.I., Estimators for Uncertain Dynamic Systems, Dordrecht: Springer Science+Business Media, 2013.

    MATH  Google Scholar 

  9. Bobrik, G.I. and Matasov, A.I., Optimal Guaranteeing Estimation of Parameters of an Accelerator Unit, Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, 1993, no. 5, pp. 8–14.

    Google Scholar 

  10. Akimov, P.A., Derevyankin, A.V., and Matasov, A.I., Garantiruyushchee otsenivanie i l 1-approksimatsiya v zadachakh otsenivaniya parametrov BINS pri stendovykh ispytaniyakh (Guaranteeing Estimation and l 1-Approximation in Parameter Estimation Problems of Strapdown Inertial Navigation Systems in Bench Tests), Moscow: Mosk. Gos. Univ., 2012.

    Google Scholar 

  11. Ishlinskii, A.Yu., Orientatsiya, giroskopy i inertsial’naya navigatsiya (Orientation, Gyros and Inertial Navigation), Moscow: Nauka, 1976.

    Google Scholar 

  12. Golovan, A.A. and Parusnikov, N.A., Matematicheskie osnovy navigatsionnykh sistem. Ch. I. Matematicheskie modeli inertsial’noi navigatsii (Mathematical Foundations of Navigation Systems. Part I: Mathematical Models of Inertial Navigation), Moscow: MAKS Press, 2011.

    Google Scholar 

  13. Braslavskii, D.A., Polikovskii, E.F., and Yakubovich, A.M., A Calibration Method for a Three-Axes Accelerometer Unit, Patent Application no. 2422425/23, USSR, November 24, 1976.

    Google Scholar 

  14. Chesnokov, G.I., Polikovskii, E.F., Molchanov, A.V., and Kremer, V.I., Some Approaches to Improve the Performance Characteristics of Strapdown Inertial Navigation Systems, Tr. X SPb. mezhd. konf. po integrirovannym navigatsionnym sistemam (Proc. 10th St. Petersburg Int. Conf. on Integrated Navigation Systems), St. Petersburg: Tsentr. Nauchno-Issled. Inst. Elektropribor, 2003, pp. 155–164.

    Google Scholar 

  15. Izmailov, E.A., Lepe, S.N., Molchanov, A.V., and Polikovskii, E.F., Scalar Method for Calibration and Balancing Strapdown Inertial Navigation Systems, Tr. XV SPb. mezhd. konf. po integrirovannym navigatsionnym sistemam (Proc. 15th St. Petersburg Int. Conf. on Integrated Navigation Systems), St. Petersburg: Tsentr. Nauchno-Issled. Inst. Elektropribor, 2008, pp. 145–154.

    Google Scholar 

  16. Matasov, A.I., Some Parameter Identification Problems in Inertial Navigation, Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 1982.

    Google Scholar 

  17. Matasov, A.I., Nonsmooth Variational Problems for Calibration of Accelerometer Units, Dokl. Math., 2019, vol. 2, no. 1, pp. 4–404

    MATH  Google Scholar 

  18. Marcus, M. and Minc, H., A Survey of Matrix Theory and Matrix Inequalities, Boston: Allyn and Bacon, 1964. Translated under the title Obzor po teorii matrits i matrichnykh neravenstv, Moscow: Nauka, 1972.

    MATH  Google Scholar 

  19. Smolyak, S.A., On Optimal Restoration of Functions and Functionals of Functions, Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Moscow State Univ., 1965.

    Google Scholar 

  20. Marchuk, A.G. and Osipenko, L.Yu., Best Approximation of Functions Specified with an Error at a Finite Number of Points, Math. Notes, 1975, vol. 2, no. 3, pp. 4–212.

    MATH  Google Scholar 

  21. Milanese, M. and Tempo, R., Optimal Algorithms Theory for Robust Estimation and Prediction, IEEE Transact. Autom. Control, 1985, vol. AC-30, no. 8, pp. 730–743.

    Google Scholar 

  22. Matasov, A.I., On Optimality of Linear Guaranteed Estimation Algorithms I, II, Kosm. Issled., 1988, vol. 2, no. 5, pp. 4–653; no. 6, pp. 807–812.

    Google Scholar 

  23. Matasov, A.I., Optimality of Linear Algorithms in the Worst Correlation Problem, Vestn. Mosk. Gos. Univ., Ser. Mat. Mekh., 1989, no. 1, pp. 61–64.

    Google Scholar 

  24. Magaril-Il’yaev, G.G. and Tikhomirov, V.M., Vypuklyi analiz i ego prilozheniya (Convex Analysis and Its Applications), Moscow: Librokom, 2011.

    Google Scholar 

  25. Ekeland, I. and Temam, R., Convex Analysis and Variational Problems, Amsterdam: North-Holland, 1976. Translated under the title Vypuklyi analiz i variatsionnye problemy, Moscow: Mir, 1979.

    MATH  Google Scholar 

  26. Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: Fizmatlit, 2007.

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research, project no. 18-01-00054-a. The author is grateful to the reviewers for careful reading of the manuscript and helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Matasov.

Additional information

This paper was recommended for publication by O.A. Stepanov, a member of the Editorial Board

Russian Text © The Author(s), 2019, published in Avtomatika i Telemekhanika, 2019, No. 12, pp. 59–79.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matasov, A.I. Variational Problems for Calibrating an Accelerometer Unit. Autom Remote Control 80, 2135–2151 (2019). https://doi.org/10.1134/S000511791912004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791912004X

Keywords

Navigation