Skip to main content
Log in

An Overview of Semidefinite Relaxations for Optimal Power Flow Problem

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The AC optimal power flow (AC OPF) problem is considered and five convex relaxations for solving this problem—the semidefinite, chordal, conic, and moment-based ones as well as the QC relaxation—are overviewed. The specifics of the AC formulation and also the nonconvexity of the problem are described in detail. Each of the relaxations for OPF is written in explicit form. The semidefinite, chordal and conic relaxations are of major interest. They are implemented on a test example of four nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cain, M., O’Neill, R., and Castillo, A., History of Optimal Power Flow and Formulations, Federal Energy Regulatory Commission, 2012, vol. 1, pp. 1–36.

    Google Scholar 

  2. Stott, B. and Alsac, O., Optimal Power Flow—Basic Requirements for Real-Life Problems and Their Solutions, Proc. SEPOPE XII Sympos., Rio de Janeiro, Brazil, 2012, vol. 1, pp. 1866–76.

    Google Scholar 

  3. Venikov, V.A. and Sukhanov, R.P., Kiberneticheskie modeli elektricheskikh sistem (Cybernetic Models of Electrical Power Systems), Moscow: Energoizdat, 1982.

    Google Scholar 

  4. Stott, B., Jardim, J., and Alsac, O., DC Power Flow Revisited, IEEE Transact. Power Syst., 2009, vol. 24, no. 3, pp. 1290–1300.

    Article  Google Scholar 

  5. Momoh, J., Electric Power System Applications of Optimization, Boca Raton: CRC Press, 2009.

    Google Scholar 

  6. Zhifeng, Q., Deconinck, G., and Belmans, R., A Literature Survey of Optimal Power Flow Problems in the Electricity Market Context, IEEE/PES Power Syst. Conf. Expos., 2009, vol. 1, pp. 1–6.

    Google Scholar 

  7. Gan, L., Li, N., Topcu, U., and Low, S., Exact Convex Relaxation of Optimal Power Flow in Radial Networks, IEEE Transact. Autom. Control, 2015, vol. 60, no. 1, pp. 72–87.

    Article  MathSciNet  MATH  Google Scholar 

  8. Zorin, I., Vasilyev, S., and Gryazina, E., Fragility of the Semidefinite Relaxation for the Optimal Power Flow Problem, IEEE Int. Conf. Sci. Electr. Eng. (ICSEE), 2016, pp. 1–5.

    Google Scholar 

  9. Boyd, L. and Vandenberghe, S., Semidefinite Programming, SIAM Rev., 1996, vol. 38, no. 1, pp. 49–95.

    Article  MathSciNet  MATH  Google Scholar 

  10. Bose, S., Low, S., Teeraratkul, T., and Hassibi, B., Equivalent Relaxations of Optimal Power Flow, IEEE Transact. Autom. Control, 2015, vol. 60, no. 3, pp. 729–742.

    Article  MathSciNet  MATH  Google Scholar 

  11. Lavaei, J. and Low, S., Zero Duality Gap in Optimal Power Flow Problem, IEEE Transact. Power Syst., 2011, vol. 27, pp. 92–107.

    Article  Google Scholar 

  12. Capitanescu, F., Critical Review of Recent Advances and Further Developments Needed in AC Optimal Power Flow, Electr. Power Syst. Res., 2016, vol. 136, pp. 57–68.

    Article  Google Scholar 

  13. Lesieutre, B., Molzahn, D., Borden, A., and DeMarco, C., Examining the Limits of the Application of Semidefinite Programming to Power Flow Problems, Proc. Allerton Conf., 2011, vol. 1, pp. 1492–1499.

    Google Scholar 

  14. Robert, G., Johnson, C., Sa, E., and Wolkowicz, H., Positive Definite Completions of Partial Hermitian Matrices, Linear Algebra Appl., 1984, vol. 58, pp. 109–24.

    Article  MathSciNet  MATH  Google Scholar 

  15. Woerdeman, H., Minimal Rank Completions for Block Matrices, Linear Algebra Appl., 1989, vol. 121, pp. 105–22.

    Article  MathSciNet  MATH  Google Scholar 

  16. Mituhiro, F., Kojima, M., Murota, K., and Nakata, K., Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework, SIAM J. Optim., 2001, vol. 11, pp. 647–74.

    Article  MathSciNet  MATH  Google Scholar 

  17. Low, S., Convex Relaxation of Optimal Power Flow—Part I: Formulations and Equivalence, IEEE Transact. Control Net. Syst., 2014, vol. 1, no. 1, pp. 15–27.

    Article  MathSciNet  MATH  Google Scholar 

  18. Low, S., Convex Relaxation of Optimal Power Flow—Part II: Exactness, IEEE Transact. Control Net. Syst., 2014, vol. 1, no. 2, pp. 177–189.

    Article  MathSciNet  MATH  Google Scholar 

  19. Molzahn, D. and Hiskens, I., Moment-Based Relaxation of the Optimal Power Flow Problem, Power Syst. Comput. Conf. (PSCC), 2014, vol. 1, pp. 1–7.

    Google Scholar 

  20. Josz, C., Maeght, J., Panciatici, P., and Gilbert, J., Application of the Moment-SOS Approach to Global Optimization of the OPF Problem, IEEE Transact. Power Syst., 2015, vol. 30, no. 1, pp. 463–470.

    Article  Google Scholar 

  21. Lasserre, J., Global Optimization with Polynomials and the Problem of Moments, SIAM J. Optim., 2006, vol. 11, no. 3, pp. 796–817.

    Article  MathSciNet  MATH  Google Scholar 

  22. Lasserre, J., Moments, Positive Polynomials and Their Applications, London: Imperial College Press, 2010.

    MATH  Google Scholar 

  23. Coffrin, C., Hijazi, H., and Van Hentenryck, P., The QC Relaxation: A Theoretical and Computational Study on Optimal Power Flow, IEEE Transact. Power Syst., 2016, vol. 31, no. 4, pp. 3008–3018.

    Article  Google Scholar 

  24. Hijazi, H., Coffrin, C., and Van Hentenryck, P., Convex Quadratic Relaxations for Mixed-Integer Nonlinear Programs in Power Systems, Math. Program. Comput., 2017, vol. 9, no. 3, pp. 321–367.

    Article  MathSciNet  MATH  Google Scholar 

  25. Zimmerman, R., Murillo-Sanchez, C., and Thomas, R., MATPOWER: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education, IEEE Transact. Power Syst., 2011, vol. 26, no. 1, pp. 12–19.

    Article  Google Scholar 

  26. Grant, M., Boyd, S., and Ye, Y., CVX: Matlab Software for Disciplined Convex Programming, 2008. http://cvxr.com/cvx

    Google Scholar 

  27. Mosek Optimization Solver. www.mosek.com

  28. University of Washington, Power Systems Test Case Archive. www.ee.washington.edu/research/pstca

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Zorin or E. N. Gryazina.

Additional information

Russian Text © The Author(s), 2019, published in Avtomatika i Telemekhanika, 2019, No. 5, pp. 32–57.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorin, I.A., Gryazina, E.N. An Overview of Semidefinite Relaxations for Optimal Power Flow Problem. Autom Remote Control 80, 813–833 (2019). https://doi.org/10.1134/S0005117919050023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919050023

Keywords

Navigation