Skip to main content
Log in

Optimal Insurance Strategy in the Individual Risk Model under a Stochastic Constraint on the Value of the Final Capital

  • Optimization, System Analysis, and Operations Research
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We solve a problem of optimal risk control in the static model by choosing an admissible insurance policy, where the objective functional is the so-called Markowitz utility functional, i.e., a functional that depends only on the mean value and standard deviation of the insurer’s final capital after an insurance transaction. Interests of the insurer are taken into account by introducing probabilistic or, more precisely, quantile constraints (value at risk constraint) on the final capital of the insurer, using a normal distribution to model the distribution of total damage. Additionally, we impose a restriction with probability one on the risk taken from an individual policy holder. Optimal from the point of view of the insurer is the so-called stop-loss insurance. We find explicit forms of conditions for refusing an insurance transaction. We give an example that illustrates the proven results in case of an exponential distribution of claim size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowers, N.L., Gerber, H.U., Hickman, J.C., Jones, D.A., and Nesbitt, C.J., Actuarial Mathematics, Society of Actuaries, 1997. Translated under the title Aktuarnaya matematika, Moscow: Yanus–K, 2001.

    Google Scholar 

  2. Arrow, K.J., Essays in the Theory of Risk Bearing, Chicago: Wiley, 1971.

    MATH  Google Scholar 

  3. Raviv, A., The Design of an Optimal Insurance Policy, Am. Econ. Rev., 1979, pp. 84–96.

    Google Scholar 

  4. Golubin, A.Y., Pareto–Optimal Insurance Policies in the Models with a Premium Based on the Actuarial Value, J. Risk Insur., 2006, vol. 73, no. 3, pp. 469–487.

    Article  MathSciNet  Google Scholar 

  5. Blazenko, G., Optimal Indemnity Contracts, Insur. Math. Econ., 1985, vol. 4, pp. 267–278.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cummins, J. and Mahul, O., The Demand for Insurance with an Upper Limit on Coverage, J. Risk Insur., 2004, vol. 71, no. 2, pp. 253–264.

    Article  Google Scholar 

  7. Golubin, A.Yu., Gridin, V.N., and Gazov, A.I., Risk Bearing in a Statical Model with Reinsurance, Autom. Remote Control, 2009, vol. 70, no. 8, pp. 1385–1395.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kibzun, A.I. and Kan, Yu.S., Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami (Stochastic Programming Problems with Probabilistic Criteria), Moscow: Fizmatlit, 2009.

    MATH  Google Scholar 

  9. Zhou, C. and Wu, C., Optimal Insurance under the Insurer’s VaR Constraint, GRIR, 2009, vol. 34, pp. 140–154.

    Google Scholar 

  10. Chi, Y. and Weng, C., Optimal Reinsurance Subject to Vajda Condition, Insur. Math. Econ., 2013, vol. 53, no. 1, pp. 179–189.

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, J., Tan, K.S., Weng, C., and Zhang, Y., Optimal Reinsurance under VaR and CTE Risk Measures, Insur. Math. Econ., 2008, vol. 43, no. 1, pp. 185–196.

    Article  MathSciNet  MATH  Google Scholar 

  12. Lu, Z.Y., Liu, L.P., and Meng, S.W., Optimal Reinsurance with Concave Ceded Loss Functions under VaR and CTE Risk Measures, Insur. Math. Econ., 2013, vol. 52, no. 1, pp. 46–51.

    Article  MathSciNet  MATH  Google Scholar 

  13. Chi, Y. and Zhou, M., Optimal Reinsurance Design: A Mean–Variance Approach, NAAJ, 2017, vol. 21, no. 1, pp. 1–14.

    MathSciNet  Google Scholar 

  14. Gaivoronski, A. and Pflug, G., Value at Risk in Portfolio Optimization: Properties and Computational Approach, J. Risk, 2004, vol. 7, no. 2, pp. 1–31.

    Article  Google Scholar 

  15. Bazara, M.S. and Shetty, C.M., Nonlinear Programming: Theory and Algorithms, New York: Wiley, 1979. Translated under the title Nelineinoe programmirovanie. Teoriya i algoritmy, Moscow: Mir, 1982.

    Google Scholar 

  16. Lehmann, E.L., Testing Statistical Hypotheses, New York: Wiley, 1959. Translated under the title Proverka statisticheskikh gipotez, Moscow: Nauka, 1964.

    Google Scholar 

  17. Galeev, E.M., Optimizatsiya: teoriya, primery, zadachi (Optimization: Theory, Examples, Problems), Moscow: Editorial URSS, 2010.

    Google Scholar 

  18. Landsman, Z. and Valdez, E.A., Tail Conditional Expectations for Elliptical Distributions, NAAJ, 2003, vol. 7, no. 4, pp. 55–71.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Yu. Golubin or V. N. Gridin.

Additional information

Russian Text © A.Yu. Golubin, V.N. Gridin, 2019, published in Avtomatika i Telemekhanika, 2019, No. 4, pp. 144–155.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubin, A.Y., Gridin, V.N. Optimal Insurance Strategy in the Individual Risk Model under a Stochastic Constraint on the Value of the Final Capital. Autom Remote Control 80, 708–717 (2019). https://doi.org/10.1134/S0005117919040088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919040088

Keywords

Navigation