Skip to main content
Log in

Entering into the Domain of Feasible Solutions Using Interior Point Method

  • Large Scale Systems Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The interior point algorithm for a linear programming problem is considered. The algorithm consists of two stages. At the first stage, we enter into the domain of feasible solutions for given constraints. The second stage lies in optimization over the feasible domain. Entering into the feasible domain is represented as an extended linear programming problem by adding only one new variable. The main goal of this paper is to provide a theoretical justification for the process of entering into the feasible domain under the assumption that the extended problem is nondegenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dikin, I.I., Iterative Solution of Linear and Quadratic Programming Problems, Dokl. Akad. Nauk SSSR, 1967, vol. 174, no. 4, pp. 747–748.

    MathSciNet  MATH  Google Scholar 

  2. Dikin, I.I., Convergence of One Iterative Process, Upr. Sistemy, 1974, no. 12, pp. 54–60.

    Google Scholar 

  3. Dikin, I.I., Metod vnutrennikh tochek v lineinom i nelineinom programmirovanii (Internal Point Method in Linear and Nonlinear Programming), Moscow: KRASAND, 2010.

    Google Scholar 

  4. Dikin, I.I. and Zorkaltsev, V.I., Iterativnoe reshenie zadach matematicheskogo programmirovaniya: algoritmy, metody vnutrennikh tochek (Iterated Solution of Mathematical Programming Problems: Interior Point Algorithms), Novosibirsk: Nauka, 1980.

    Google Scholar 

  5. Evtushenko, Yu.G., Metody resheniya ekstremal’nykh zadach i ikh primeneniya v sistemakh optimizatsii (Solution Methods for Extremal Problems and Their Application in Optimization Systems), Moscow: Nauka, 1982.

    MATH  Google Scholar 

  6. Eremin, I.I., Mazurov, V.D., and Astaf’ev, N.N., Nesobstvennye zadachi lineinogo i vypuklogo programmirovaniya (Improper Problems of Linear and Convex Programming), Moscow: Nauka, 1983.

    Google Scholar 

  7. Eremin, I.I., Teoriya lineinoi optimizatsii (Theory of Linear Optimization), Yekaterinburg: Ross. Akad. Nauk, 1998.

    Google Scholar 

  8. Zorkaltsev, V.I., Iterative Algorithm for Solving Linear Programming Problem, in Algorithms and Programs for Solving Problems of Linear Algebra and Mathematical Programming, Irkutsk: Sibirsk. Energ. Inst., 1998

    Google Scholar 

  9. Zorkaltsev, V.I., Otnositel’no vnutrennyaya tochka optimal’nykh reshenii (A Relatively Interior Point of Optimal Solutions), Syktyvkar: Akad. Nauk SSSR, 1984.

    Google Scholar 

  10. Zorkaltsev, V.I., Metody prognozirovaniya i analiza effektivnosti funktsionirovaniya sistemy toplivosnabzheniya (Methods of Prediction and Efficiency Analysis of Fuel Supply Systems), Moscow: Nauka, 1988.

    Google Scholar 

  11. Zorkaltsev, V.I., Justification of the Class of Projective Algorithms, Inkutsk: Inst. Sist. Energetiki, 1995.

    Google Scholar 

  12. Zorkaltsev, V.I., Substantiation of Interior Point Algorithms, Comput. Math. Math. Phys., 1999, vol. 39, no. 2, pp. 198–211.

    MathSciNet  Google Scholar 

  13. Zorkaltsev, V.I., A Class of Interior Point Algorithms, Zh. Vych. Mat. Mat. Fiz., 2004, vol. 49, no. 12, pp. 1–18.

    MathSciNet  Google Scholar 

  14. Zorkaltsev, V.I. and Kiseleva, M.A., Sistemy lineinykh neravenstv (Systems of Linear Inequalities), Irkutsk: Irkutsk. Gos. Univ., 2007.

    Google Scholar 

  15. Rockafellar, R.T., Convex Analysis, Princeton: Princeton Univ. Press, 1970. Translated under the title Vypuklyi analiz, Moscow: Mir, 1973.

    MATH  Google Scholar 

  16. Filatov, A.Yu., Development of Interior Point Algorithms and Their Applications to Systems of Inequalities, Cand. Sci. (Phys.–Math.) Dissertation, Irkutsk, Irkutsk State University, 2001.

    Google Scholar 

  17. Barnes, E.R., A Variation on Karmarkar’s Algorithm for Solving Linear Problems, IBM Boston Research Centre, 1986.

    MATH  Google Scholar 

  18. Karmarkar, N.A., New Polynomical Time Algorithm for Linear Programming, Combinatorica, 1984, no. 4, pp. 373–395.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mitchell, J.E. and Todd M.J., On the Relations in the Affine and Projective Variant of Karmarkar’s Linear Programming Algorithm: Technical Report, Ithaca: School of Operat. Res. Industr. Eng., College of Engineering, Cornell Univ., 1986, no. 4.

    Google Scholar 

  20. Vanderbey, R.J., Mechetov, M.S., and Freedman, B.A., A Modification of Karmarkar’s Linear Programming Algorithm, Holmdel: AT&T Bell Laboratories, 1985.

    Google Scholar 

  21. Wei Zi–Luan, An Interior Point Method for Linear Programming, J. Comput. Math., 1987, vol. 5, no. 4, pp. 342–351.

    Google Scholar 

  22. Tsuchiya, T., Global Convergence of the Affine Scaling Methods for Degenerate Linear Programming Problems, Research Memorandum no. 373, Tokyo: Inst. Statistical Mathematics, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zorkaltsev.

Additional information

Russian Text © V.I. Zorkaltsev, 2016, published in Upravlenie Bol’shimi Sistemami, 2016, No. 59, pp. 23–44.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorkaltsev, V.I. Entering into the Domain of Feasible Solutions Using Interior Point Method. Autom Remote Control 80, 348–361 (2019). https://doi.org/10.1134/S0005117919020127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919020127

Keywords

Navigation