Skip to main content

Development of Metaheuristic Interval Minimization Methods for Optimal Program Control Design


This paper proposes metaheuristic interval methods of global constrained optimization and their software implementation. Three methods are considered: average path endings, stochastic grid, and interval scatter search. The methods are applied to optimal program control design for nonlinear deterministic discrete and continuous systems. As an application the problem of three-dimensional interception is solved and a comparative analysis of efficiency is presented.

This is a preview of subscription content, access via your institution.


  1. Gurman, V.I., Rasina, I.V., and Blinov, A.O., Evolution and Prospects of Approximate Optimal Control Methods, Progr. Sist.: Teor. Prilozh., 2011, vol. 6, no. 2, pp. 11–29.

    Google Scholar 

  2. Panovskiy, V.N., Applied Application of Explosion Interval Method, Tr. Mosk. Aviats. Inst., 2014, no. 73. (Accessed March 19, 2016).

    Google Scholar 

  3. Panovskiy, V.N., Application of the Interval Analysis for the Search of the Global Extremum of Functions, Tr. Mosk. Aviats. Inst., 2012, no. 51. (Accessed March 19, 2016).

    Google Scholar 

  4. Panteleev, A.V., Variatsionnoe ischislenie v primerakh i zadachakh (Variational Calculus in Examples and Problems), Moscow: Vuzovskaya Kniga, 2013.

    Google Scholar 

  5. Panteleev, A.V., Metlitskaya, D.V., and Aleshina, E.A., Metody global’noi optimizatsii. Metaevristicheskie strategii i algoritmy (Global Optimization Methods. Metaheuristic Strategies and Algorithms), Moscow: Vuzovskaya Kniga, 2013.

    Google Scholar 

  6. Panteleev, A.V., Primenenie evolyutsionnykh metodov global’noi optimizatsii v zadachakh optimal’nogo upravleniya determinirovannymi sistemami (Application of Evolutionary Global Optimization Methods to Optimal Control of Deterministic Systems), Moscow: Mosk. Aviats. Inst., 2013.

    Google Scholar 

  7. Fedorenko, R.P., Priblizhennoe reshenie zadach optimal’nogo upravleniya (Approximate Solution of Optimal Control Problems), Moscow: Nauka, 1978.

    MATH  Google Scholar 

  8. Shary, S.P., Konechnomernyi interval’nyi analiz (Finite–Dimensional Interval Analysis), Novosibirsk: XYZ, 2010.

    Google Scholar 

  9. Floudas, C.A. and Pardalos, P.M., Encyclopedia of Optimization, London: Springer, 2009.

    Book  MATH  Google Scholar 

  10. Jaulin, L., Kieffer, M., Didrit, O., et al., Applied Interval Analysis, London: Springer–Verlag, 2001.

    Book  MATH  Google Scholar 

  11. Hansen, E., Global Optimization Using Interval Analysis, New York: Marcel Dekker, 2004.

    MATH  Google Scholar 

  12. Michalewicz, Z. and Fogel, D., How to Solve It: Modern Heuristics, London: Springer, 2004.

    Book  MATH  Google Scholar 

  13. Moore, R.E., Interval Analysis, Englewood Cliffs: Prentice Hall, 1966.

    Google Scholar 

  14. Moore, R.E., Methods and Applications of Interval Analysis, Philadelphia: SIAM, 1979.

    Book  MATH  Google Scholar 

  15. Ratschek, H. and Rokne, J., New Computer Methods for Global Optimization, Chichester: Horwood, 1988.

    MATH  Google Scholar 

  16. Shary, S.P., A Surprising Approach in Interval Global Optimization, Reliable Comput., 2001, vol. 7, no. 6, pp. 497–505.

    Article  MathSciNet  MATH  Google Scholar 

  17. Shary, S.P., Randomized Algorithms in Interval Global Optimization, Numer. Anal. Appl., 2008, vol. 1, pp. 376–389.

    Article  Google Scholar 

  18. Tewari, A., Advanced Control of Aircraft, Spacecraft and Rockets, New York: Wiley, 2011.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to A. V. Panteleev or V. N. Panovskiy.

Additional information

Russian Text © A.V. Panteleev, V.N. Panovskiy, 2016, published in Upravlenie Bol’shimi Sistemami, 2016, No. 60, pp. 41–62.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panteleev, A.V., Panovskiy, V.N. Development of Metaheuristic Interval Minimization Methods for Optimal Program Control Design. Autom Remote Control 80, 334–347 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • interval methods
  • metaheuristic methods
  • global constrained optimization
  • optimal control