Skip to main content
Log in

Testing the Configurations of Redundant Integrated Equipment Complexes

  • Control in Technical Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider one of the tasks of managing the redundancy in a heterogeneous integrated complex of technical equipment defined by a system of linear discrete equations. The task consists in testing a predefined configuration of the complex for implementability. We formulate both sufficient and necessary and sufficient conditions for testing configurations formalized by interface matrices. We illustrate the application and efficiency of the proposed testing conditions with an example based on a redundant aircraft motion control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bukov, V.N., Evgenov, A.V., and Shurman, V.A., Integrated Complexes of Onboard Equipment with a Controllable Functional Redundancy, Current Problems and Promising Directions of Development for Complexes of Aviation Equipment. Proc. V Intl. Conf. Academic Zhukov Readings, November 22–23, 2017, Voronezh: KVALIS, 2018, pp. 23–28.

    Google Scholar 

  2. Bukov, V.N., Ageev, A.M., Gamayunov, I.F., and Shurman, V.A., Architecture of Onboard Equipment Complexes for Aircraft from the Position of Realizability of Non–Serviceability Functions, Proc. Intl. Conf. Mechatronics, Automatics, and Robotics, Novokuznetsk: NITS MS, 2018, no. 2, pp. 206–210.

    Google Scholar 

  3. Gamayunov, I.F., Ageev, A.M., and Shurman, V.A., Characteristic Features of Operating Modes for a Redundant Complex of Onboard Equipment, Proc. Intl. Conf. Mechatronics, Automatics, and Robotics, Novokuznetsk: NITS MS, 2018, no. 2, pp. 211–215.

    Google Scholar 

  4. Belousov, I.A., Constructing the Architecture of a Backup Circuit of an Integrated Navigation System and Finding the Orientation of a Small Man–Made Earth Satellite, PhD. Thesis, Moscow: MAI (GTU), 2003.

    Google Scholar 

  5. Ageev, A.M., Bronnikov, A.M., Bukov, V.N., and Gamayunov, I.F., Supervisory Control Method for Redundant Technical Systems, J. Comput. Syst. Sci. Int., 2017, vol. 56, no. 3, pp. 410–419.

    Article  MATH  Google Scholar 

  6. Bukov, V.N., Bronnikov, A.M., Ageev, A.M., and Gamayunov, I.F., An Analytic Approach to Constructing Configurations of Technical Systems, Autom. Remote Control, 2017, vol. 78, no. 9, pp. 1600–1613.

    Article  MathSciNet  MATH  Google Scholar 

  7. Zakharov, N.A., Klepikov, V.I., and Pokhvatilin, D.S., Redundancy Control for Networked Distributed Systems of Unserviced Avionics, Aviakosm. Priborostr., 2018, no. 3, pp. 3–12.

    Google Scholar 

  8. Gamayunov, I.F., Generation of Alternative Solutions in the Redundancy Management Problem for Hardware Complexes, Autom. Remote Control, 2018, vol. 79, no. 4, pp. 655–664.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ageev, A.M., Configuring of Excessive Onboard Equipment Sets, J. Comput. Syst. Sci. Int., 2018, vol. 57, no. 4, pp. 640–654.

    Article  MATH  Google Scholar 

  10. Vorob’ev, A.V., Bukov, V.N., Shurman, V.A, D’yachenko, A.M., Yakovlev, Yu.V., and Gnusin, M.Yu., Method of Automated Control for the Redundancy of a Non–Uniform Computational System and a Device for Its Realization, Patent RU 2612569 C2, Byull. Izobret., 2017, no. 7

    Google Scholar 

  11. Boblak, I.V., Bukov, V.N., Shurman, V.A., Vorob’ev, A.V., and Evgenov, A.V., Method of Automated Control for Heterogeneous Redundancy of an Equipment Complex and a Device for Its Realization, Patent RU 2646769 C2, Byull. Izobret., 2018, no. 7

    Google Scholar 

  12. Boblak, I.V., Bukov, V.N., Sheinin, Yu.E., Bronnikov, A.M., Shurman, V.A., Vorob’ev, A.V., and Evgenov, A.V., Method of Control for the Redundancy of an Onboard Integrated Computational Envirornment and a Device for Its Realization, Patent RU 2647339 C2, Byull. Izobret., 2018, no. 8.

    Google Scholar 

  13. Shevtsov, G.A. and Sheremet, E.M., Logicheskoe rezervirovanie (Logical Backup), Lvov: Lvov Univ., 1973.

    Google Scholar 

  14. Belousov, Yu.A., Fault–Tolerant Onboard Computational Systems. Hardware Problems, Aviakosm. Priborostr., 2003, no. 3, pp. 18–23.

    Google Scholar 

  15. Klepikov, V.I., Otkazoustoichivost’ raspredelennykh sistem upravleniya (Fault–Tolerance of Distributed Control Systems), Moscow: Zolotoe Sechenie, 2014.

    Google Scholar 

  16. Degtyarev, A.R. and Kiselev, S.K., Reliability of Reconfigurable Complexes of Integrated Modular Avionics, Avtomatiz. Prots. Upravlen., 2016, vol. 43, no. 1, pp. 25–30.

    Google Scholar 

  17. Tarasov, A.A., Funktsional’naya rekonfiguratsiya otkazoustoichivykh sistem (Functional Reconfiguration of Fault–Tolerant Systems), Moscow: Logos, 2012.

    Google Scholar 

  18. Bukov, V.N., Vlozhenie system. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (Embedding of Systems. Analytical Approach to Analysis and Synthesis of Matrix Systems), Kaluga: Izd. Nauch. Lit. Bochkarevoi, 2006.

    Google Scholar 

  19. Goryunov, S.V. and Bukov, V.N., Inversion and Canonization of Block Matrices, Mat. Zametki, 2006, vol. 79, no. 5, pp. 662–673.

    Article  MathSciNet  MATH  Google Scholar 

  20. Moore, E.H., General Analysis, Memoirs APS, 1935, vol. 1.

    MATH  Google Scholar 

  21. Penrose, R.A., A Generalized Inverse for Matrices, Proc. Cambridge Philosoph. Soc., 1955, vol. 51, pp. 406–413.

    Article  MATH  Google Scholar 

  22. Rothblum, U.G., A Representation of the Drazin Inverse and Characterizations of the Index, SIAM J. Appl. Math., 1976, vol. 31, pp. 646–648.

    Article  MathSciNet  MATH  Google Scholar 

  23. Rothblum, U.G., Computation of the Eigenprojection of a Nonnegative Matrix at Its Spectral Radius, Math. Prog. Study, 1976, vol. 6, pp. 188–201.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hausman, W.H. and Searle, S., Matrix Algebra for Business and Economics, New York: Wiley–Interscience, 1970. Translated under the title Matrichnaya algebra v ekonomike, Moscow: Statistika, 1974.

    Google Scholar 

  25. Moroz, A.I., Kurs teorii sistem (A Course in Systems Theory), Moscow: Vysshaya Shkola, 1987.

    Google Scholar 

  26. Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 1985. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.

    Google Scholar 

  27. Mel’nikov, O.V., Remeslennikov, B.N., et al., Obshchaya algebra (General Algebra), Skornyakov, L.A., Ed., Moscow: Nauka, 1990, vol. 1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Bukov or A. M. Bronnikov.

Additional information

Russian Text © V.N. Bukov, A.M. Bronnikov, 2019, published in Avtomatika i Telemekhanika, 2019, No. 2, pp. 81–100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukov, V.N., Bronnikov, A.M. Testing the Configurations of Redundant Integrated Equipment Complexes. Autom Remote Control 80, 262–277 (2019). https://doi.org/10.1134/S000511791902005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791902005X

Keywords

Navigation