Skip to main content
Log in

On the Optimal Control Problem for a Linear Stochastic System with an Unstable State Matrix Unbounded at Infinity

  • Stochastic Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider a control problem over an infinite time horizon with a linear stochastic system with an unstable asymptotically unbounded state matrix. We extend the notion of anti-stability of a matrix to the case of non-exponential anti-stability, and introduce an antistability rate function as a characteristic of the rate of growth for the norm of the corresponding fundamental matrix. We show that the linear stable feedback control law is optimal with respect to the criterion of the adjusted extended long-run average. The designed criterion explicitly includes information about the rate of anti-stability and the parameters of the disturbances. We also analyze optimality conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, B.D.O., Ilchmann, A., and Wirth, F.R., Stabilizability of Linear Time–Varying Systems, Syst. Control Lett., 2013, vol. 62, no. 9, pp. 747–755.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacciotti, A. and Rosierm, L., Liapunov Functions and Stability in Control Theory, New York: Springer, 2006.

    Google Scholar 

  3. Dragan, V. and Halanay, A., Stabilization of Linear Systems, Boston: Birkhauser, 1999.

    Book  MATH  Google Scholar 

  4. Dragan, V., Morozan, T., and Stoica, A.M., Mathematical Methods in Robust Control of Linear Stochastic Systems, New York: Springer, 2006.

    MATH  Google Scholar 

  5. Fomichev, V.V., Mal’tseva, A.V., and Shuping, W., Stabilization Algorithm for Linear Time–Varying Systems, Differ. Equat., 2017, vol. 53, no. 11, pp. 1495–1500.

    Article  MathSciNet  MATH  Google Scholar 

  6. Phat, V.N., Global Stabilization for Linear Continuous Time–Varying Systems, Appl. Math. Comput., 2006, vol. 175, no. 2, pp. 1730–1743.

    MathSciNet  MATH  Google Scholar 

  7. Terrell, W.J., Stability and Stabilization: An Introduction, Princeton: Princeton Univ. Press, 2009.

    Book  MATH  Google Scholar 

  8. Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York: Wiley, 1972. Translated under the title Lineinye optimal’nye sistemy upravleniya, Moscow: Mir, 1977.

    MATH  Google Scholar 

  9. Wu, M.–Y. and Sherif, A., On the Commutative Class of Linear Time–Varying Systems, Int. J. Control, 1976, vol. 23, no. 3, pp. 433–444.

    Article  MathSciNet  MATH  Google Scholar 

  10. Jetto, L., Orsini, V., and Romagnoli, R., BMI–based Stabilization of Linear Uncertain Plants with Polynomially Time Varying Parameters, IEEE Trans. Automat. Control, 2015, vol. 60, no. 8, pp. 2283–2288.

    Article  MathSciNet  MATH  Google Scholar 

  11. Jones, J.J., Modelling and Simulation of Large Scale Multiparameter Dynamical System, Proc. IEEE 1989 National Aerospace and Electronics Conf. (NAECON 1989), New York: IEEE, 1989, pp. 415–425.

    Google Scholar 

  12. Levine, J. and Zhu, G., Observers with Asymptotic Gain for a Class of Linear Time–Varying Systems with Singularity, IFAC Proc. Volumes, 1993, vol. 26, no. 2, pp. 145–148.

    Article  Google Scholar 

  13. Karafyllis, I. and Tsinias, J., Non–Uniform in Time Stabilization for Linear Systems and Tracking Control for Non–Holonomic Systems in Chained Form, Int. J. Control, 2003, vol. 76, no. 15, pp. 1536–1546.

    Article  MathSciNet  MATH  Google Scholar 

  14. Caraballo, T., On the Decay Rate of Solutions of Non–autonomous Differential Systems, Electron. J. Differ. Equat., 2001, vol. 2001, no. 5, pp. 1–17.

    MathSciNet  MATH  Google Scholar 

  15. Inoue, M., Wada, T., Asai, T., and Ikeda, M., Non–exponential Stabilization of Linear Time–invariant Systems by Linear Time–varying Controllers, Proc. 50th IEEE Conf. on Decision and Control and European Control Conf., New York, 2011, pp. 4090–4095.

    Google Scholar 

  16. Palamarchuk, E.S., On the Generalization of Logarithmic Upper Function for Solution of a Linear Stochastic Differential Equation with a Nonexponentially Stable Matrix, Differ. Equat., 2018, vol. 54, no. 2, pp. 193–200.

    Article  MathSciNet  MATH  Google Scholar 

  17. Abou–Kandil, H., Freiling, G., Ionescu, V., and Jank, G., Matrix Riccati Equations in Control and Systems Theory, Basel: Birkhauser, 2012.

    MATH  Google Scholar 

  18. Turnovsky, S.J., Macroeconomic Analysis and Stabilization Policy, Cambrigde: Cambridge Univ. Press, 1977.

    MATH  Google Scholar 

  19. Palamarchuk, E.S., Optimization of the Superstable Linear Stochastic System Applied to the Model with Extremely Impatient Agents, Autom. Remote Control, 2018, vol. 79, no. 3, pp. 440–451.

    Article  MathSciNet  MATH  Google Scholar 

  20. Belkina, T.A. and Palamarchuk, E.S., On Stochastic Optimality for a Linear Controller with Attenuating Disturbances, Autom. Remote Control, 2013, vol. 74, no. 4, pp. 628–641.

    Article  MathSciNet  MATH  Google Scholar 

  21. Palamarchuk, E.S., Analysis of the Asymptotic Behavior of the Solution to a Linear Stochastic Differential Equation with Subexponentially Stable Matrix and Its Application to a Control Problem, Theor. Prob. App., 2018, vol. 62, no. 4, pp. 522–533.

    Article  MathSciNet  MATH  Google Scholar 

  22. Fischer, J., Optimal Sequence–Based Control of Networked Linear Systems, Karlsruhe: KIT Scientific Publishing, 2015.

    Google Scholar 

  23. Aeyels, D., Lamnabhi–Lagarrigue, F., and van der Schaft, A., Eds., Stability and Stabilization of Nonlinear Systems, Berlin: Springer, 2008.

    Google Scholar 

  24. Chen, G. and Yang, Y., New Stability Conditions for a Class of Linear Time–Varying Systems, Automatica, 2016, vol. 71, pp. 342–347.

    Article  MathSciNet  MATH  Google Scholar 

  25. Palamarchuk, E.S., Stabilization of Linear Stochastic Systems with a Discount: Modeling and Estimation of the Long–Term Effects from the Application of Optimal Control Strategies, Math. Models Comput. Simul., 2015, vol. 7, no. 4, pp. 381–388.

    Article  MathSciNet  Google Scholar 

  26. Palamarchuk, E.S., Analysis of Criteria for Long–run Average in the Problem of Stochastic Linear Regulator, Autom. Remote Control, 2016, vol. 77, no. 10, pp. 1756–1767.

    Article  MathSciNet  MATH  Google Scholar 

  27. Khasminskii, R., Stochastic Stability of Differential Equations, New York: Springer, 2012, 2nd ed.

    Book  MATH  Google Scholar 

  28. Mao, X., Stochastic Differential Equations and Applications, Cambridge, UK: Woodhead Publishing, 2007, 2nd ed.

    MATH  Google Scholar 

  29. Palamarchuk, E.C., Risk Estimation in Linear Economic Systems under Negative Time Preferences, Ekonom. Mat. Metody, 2013, vol. 49, no. 3, pp. 99–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Palamarchuk.

Additional information

Russian Text © E.S. Palamarchuk, 2019, published in Avtomatika i Telemekhanika, 2019, No. 2, pp. 64–80.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palamarchuk, E.S. On the Optimal Control Problem for a Linear Stochastic System with an Unstable State Matrix Unbounded at Infinity. Autom Remote Control 80, 250–261 (2019). https://doi.org/10.1134/S0005117919020048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117919020048

Keywords

Navigation