Advertisement

Automation and Remote Control

, Volume 80, Issue 1, pp 124–137 | Cite as

A Method to Bypass Dangerous Zones in the Horizontal Plane

  • V. I. MerkulovEmail author
  • A. S. Plyashechnik
Optimization, System Analysis, and Operations Research
  • 10 Downloads

Abstract

We propose a method of bypassing randomly located dangerous zones by an aircraft based on the use of graph theory and an aircraft control algorithm that implements this method. We provide different options for implementing the method and the control algorithm and results of studying them.

Keywords

dangerous area bypass control system Dijkstra algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Verba, V.S., Aviatsionnye kompleksy radiolokatsionnogo dozora i navedeniya. Printsipy postroeniya, problemy razrabotki i osobennosti funktsionirovaniya (Aviation Complexes of Radiolocation Surveillance and Homing. Design Principles, Development Problems, and Characteristic Features of Operation), Moscow: Radiotekhnika, 2014.Google Scholar
  2. 2.
    Mattei, M. and Blasi, L., Smooth Flight Trajectory Planning in the Presence of No-Fly Zones and Obstacles, J. Guidance, Control, Dynam., 2010, vol. 33, no. 2, pp. 454–462.CrossRefGoogle Scholar
  3. 3.
    Ran, D. and Cochran, J.E., Path Planning and State Estimation for Unmanned Aerial Vehicles in Hostile Environments, J. Guidance, Control, Dynam., 2010, vol. 33, no. 2, pp. 595–601.CrossRefGoogle Scholar
  4. 4.
    Hwang, Y.K., Ahuja N., A Potential Field Approach to Path Planning, IEEE Trans. Robot. Automat., 1992, vol. 8, no. 1, pp. 23–32.CrossRefGoogle Scholar
  5. 5.
    Petrov, A.A. and Sirota, I.M., Obstacle Avoidance by a Robot Manipulator under Limited Information about the Environment, Autom. Remote Control, 1983, vol. 44, no. 4, pp. 431–440.zbMATHGoogle Scholar
  6. 6.
    Gates, D.J., Nonlinear Path Following Method, J. Guidance, Control, Dynam., 2010, vol. 33, no. 2, pp. 321–332.CrossRefGoogle Scholar
  7. 7.
    Medagoga, E.D.W and Gibbens, P.W., Synthetic-Waypoint Guidance Algorithm for Following a Desired Flight Trajectory, J. Guidance, Control, Dynam., 2010, vol. 33, no. 2, pp. 601–606.CrossRefGoogle Scholar
  8. 8.
    Kaminer, I., Pascoal, A., Xargay, E., Hovakimyan, N., Cao, Ch., and Dobrokhodov, V., Path Following for Unmanned Aerial Vehicles Using L1 Adaptive Augmentation of Commercial Autopilots Trajectory, J. Guidance, Control, Dynam., 2010, vol. 33, no. 2, pp. 550–564.CrossRefGoogle Scholar
  9. 9.
    Merkulov, V.I., Drogalin, V.V., Kanashchenkov, A.I., et al., Aviatsionnye sistemy radioupravleniya, tom 2: Radioelektronnye sistemy navedeniya (Aviation Radio Control Systems, vol. 2: Radioelectronic Homing Systems), Kanaschenkov, A.I. and Merkulov, V.I., Eds., Moscow: Radiotekhnika, 2003.Google Scholar
  10. 10.
    Christofides, N., Graph Theory. An Algorithmic Approach, New York: Academic, 1975. Translated under the title Teoriya grafov. Algoritmicheskii podkhod, Moscow: Mir, 1978.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.JSC Concern “Vega,”MoscowRussia

Personalised recommendations