Skip to main content
Log in

Synthesis of a Multi-Connected Digital Controller for a Robotized Vibration Isolation Platform Based on H-Optimization

  • Robust, Adaptive, and Network Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider the problem of constructing multi-connected control of a robotic platform designed to protect technological objects and human operators from low-frequency influences on part of the moving base. The platform includes six drive mechanisms with stepper motors. The problem is solved by the methods of the modern theory of robust stabilization and optimal control based on H-optimization in the state space. We construct a mathematical model of the multidimensional system, taking into account the characteristics of electromechanical drives and using signals of feedback sensors as state variables. We give an example of synthesizing a multidimensional optimal stabilizing controller in the form of state feedback for a system with disturbances bounded in L2-norm. We define the feedback control structure and obtain the matrix of feedback coefficients. We also show the results of mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meilakh, A.M., Stabilization of Linear Controlled Systems under Uncertainty Conditions, Autom. Remote Control, 1975, vol. 36, no. 2, pp. 349–351.

    MathSciNet  Google Scholar 

  2. Boyd, S.L., el Chaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in Systems and Control Theory, Philadelphia: SIAM, 1994.

    Book  Google Scholar 

  3. Rybak, L.A., Chichvarin, A.V., and Shatokhin, Yu.A., Synthesis of Optimal Digital Controller for a Spatial Vibroisolation System as a Parallel Structure with an Electromechanical Drive, Probl. Mashinostroen. Nadezhn. Mashin, 2006, no. 3, pp. 81–86.

    Google Scholar 

  4. Polyak, B.T., Extended Superstability in Control Theory, Autom. Remote Control, 2004, vol. 65, no. 4, pp. 567–576.

    Article  MathSciNet  MATH  Google Scholar 

  5. Polyak, B.T. and Shcherbakov, P.S., Superstable Linear Control Systems. I. Analysis, Autom. Remote Control, 2002, vol. 63, no. 8, pp. 1239–1254.

    Article  MathSciNet  MATH  Google Scholar 

  6. Polyak, B.T. and Shcherbakov, P.S., Superstable Linear Control Systems. II. Design, Autom. Remote Control, 2002, vol. 63, no. 11, pp. 1745–1763.

    Article  MathSciNet  MATH  Google Scholar 

  7. Pogonin, A.A., Rybak, L.A., Chichvarin, A.V., and Shatokhin, Yu.A., Mechatronic Technological Systems with Control Based on Superstability, Teor. Sist. Upravlen., 2008, no. 4, pp. 146–158.

    MATH  Google Scholar 

  8. Francis, B.A., A Course in H∞ Control Theory, Berlin: Springer-Verlag, 1987.

    Book  Google Scholar 

  9. McFarlane, D.C. and Glover, K., Robust Controller Design Using Normalized Coprime Factor Plant Description, New York: Springer-Verlag, 1990.

    Book  MATH  Google Scholar 

  10. Zames, G., Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses, IEEE Trans. Autom. Control, 1981, vol. 26, pp. 301–320.

    Article  MathSciNet  MATH  Google Scholar 

  11. Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 1985. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989.

    Google Scholar 

  12. Doyle, J.C., Glover, R, Khargonekar, P.P., and Francis, B.A., State-Space Solutions to Standard H2 and H8 Control Problems, IEEE Trans. Autom. Control, 1989, vol. 34, no. 8, pp. 831–847.

    Article  MATH  Google Scholar 

  13. Petersen, I.R. and Hollot, C.V., A Riccati Equation Approach to the Stabilization of Uncertain Linear Systems, Automatica, 1986, vol. 22, no. 4, pp. 397–411.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kenjo, T., Stepping Motors and Their Microprocessor Controls, Oxford: Clarendon, 1984. Translated under the title Shagovye dvigateli i ikh mikroprotsessornye sistemy upravleniya, Moscow: Energoatomizdat, 1987.

    Google Scholar 

  15. Rybak, L.A., Cherkashin, N.N., Gun’kin, A.A., and Chichvarin, A.V., Modeling an Electromechanical Drive with a Hybrid Stepping Motor of a Robotic Platform [Online], Sovrem. Probl. Nauki Obrazov., 2014, no. 6. http://www.science-education.ru/120-17012

  16. Magergut, V.Z., Ignatenko, V.A., Bazhanov, A.G., and Shaptala, V.G., Approaches to Constructing Discrete Models of Continuous Technological Processes for Synthesis of Controlling Automata, Vestn. Belgorodsk Gos. Tekhn. Univ. im. V.G. Shukhova, 2013, no. 2, pp. 100–102.

    Google Scholar 

  17. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  18. Ji, P. and Wu, H., A Closed-Form Forward Kinematics Solution for the 6–6p Stewart Platform, IEEE Trans. Robot Automat., 2001, vol. 17, no. 4, pp. 522–526.

    Article  MathSciNet  Google Scholar 

  19. Merlet, J.-P., Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis, Int. J. Robot Res., 2004, vol. 23, no. 3, pp. 221–235.

    Article  Google Scholar 

  20. Parikh, P.J. and Lam, S.S.Y., A Hybrid Strategy to Solve the Forward Kinematics Problem in Parallel Manipulators, IEEE Trans. Robot., 2005, vol. 21, no. 1, pp. 18–25.

    Article  Google Scholar 

  21. Mita, Ts., Khara, S. and Kondo, R., Vvedenie v tsifrovoe upravlenie (Introduction to Digital Control), Moscow: Mir, 1994.

    Google Scholar 

  22. Mahmoud, N.A. and Khalil, H.K., Robust Sontrol for a Nonlinear Servomechanism Problem, Int. J. Control, 1997, vol. 66, no. 6, pp. 779–802.

    Article  MATH  Google Scholar 

  23. Khalil, H.K., Adaptive Output Feedback Control of Nonlinear Systems Represented by Input-Output Models, IEEE Trans. Autom. Control, 1996, vol. 41, no. 2, pp. 177–188.

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuznetsov, D.F., Stokhasticheskie differentsial’nye uravneniya. Teoriya i praktika chislennogo resheniya (Stochastic Differential Equations. Theory and Practice of Numerical Solutions), St. Petersburg: Polytekh. Univ., 2010, 4th ed.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Rybak.

Additional information

Original Russian Text © L.A. Rybak, E.V. Gaponenko, A.V. Chichvarin, 2018, published in Avtomatika i Telemekhanika, 2018, No. 7, pp. 99–116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybak, L.A., Gaponenko, E.V. & Chichvarin, A.V. Synthesis of a Multi-Connected Digital Controller for a Robotized Vibration Isolation Platform Based on H-Optimization. Autom Remote Control 79, 1255–1269 (2018). https://doi.org/10.1134/S0005117918070068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918070068

Keywords

Navigation