Skip to main content
Log in

New Results on the Application of the Passification Method. A Survey

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

To the jubilee of Alexander L’vovich Fradkov

Abstract

Foundations for the passification method were laid out by A.L. Fradkov in 1974 in the context of the adaptive stabilization problem for the output of a linear dynamic plant. Over the past decade, the passification method has been further developed, and new applications have appeared both in the field of systems theory and in practical control problems. This survey is devoted to these new results. We give a brief review of the fundamentals of the passification method, results of its applications in problems of adaptive and robust control, synchronization, control and estimation under communication constraints. We pay special attention to the method’s application for networking systems. We also present some other applications of the passification method that do not fall into these categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fradkov, A.L., Synthesis of Adaptive System of Stabilization of Linear Dynamic Plants, Autom. Remote Control, 1974, vol. 35, no. 12, pp. 1960–1966.

    MathSciNet  MATH  Google Scholar 

  2. Fradkov, A.L., Quadratic Lyapunov Functions in Adaptive Stabilization Problem for a Linear Dynamical Plant, Sib. Mat. Zh., 1976, vol. 17, no. 2, pp. 436–445.

    Google Scholar 

  3. Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control for Dynamic Plants), Moscow: Nauka, 1981.

    MATH  Google Scholar 

  4. Fradkov, A.L., Adaptivnoe upravlenie v slozhnykh sistemakh: bespoiskovye metody (Adaptive Control in Complex Systems: Search-Free Approaches), Moscow: Nauka, 1990.

    MATH  Google Scholar 

  5. Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control over Complex Dynamical Systems), St. Petersburg: Nauka, 2000.

    MATH  Google Scholar 

  6. Fradkov, A.L., Passification of Non-Square Linear Systems and Feedback Yakubovich–Kalman–Popov Lemma, Eur. J. Control, 2003, no. 6, pp. 573–582.

    MATH  Google Scholar 

  7. Fradkov, A.L., A Scheme of Speed Gradient and Its Application in Problems of Adaptive Control, Autom. Remote Control, 1980, vol. 41, no. 9, pp. 1333–1342.

    MATH  Google Scholar 

  8. Fradkov, A.L., Adaptive Stabilization of Minimum-Phase Plants with Vector Input without Measuring Output Derivatives, Dokl. Ross. Akad. Nauk, 1994, vol. 337, no. 5, pp. 550–552.

    MATH  Google Scholar 

  9. Andrievsky, B., Fradkov, A.L., and Kaufman, H., Necessary and Sufficient Conditions for Almost Strict Positive Realness and Their Application to Direct Implicit Adaptive Control Systems, Proc. Am. Control Conf., Baltimore, USA, 1994, pp. 1265–1266.

    Google Scholar 

  10. Andrievsky, B.R., Churilov, A.N., and Fradkov, A.L., Feedback Kalman–Yakubovich Lemma and Its Applications to Adaptive Control, Proc. 35 Conf. Decision Control (CDC’96), Kobe, Japan: IEEE, 1996, December, pp. 4537–4542.

    Google Scholar 

  11. Fradkov, A.L. and Hill, D.J., Exponential Feedback Passivity and Stabilizability of Nonlinear Systems, Automatica, 1998, vol. 34, no. 6, pp. 697–703.

    MathSciNet  MATH  Google Scholar 

  12. Bondarko, V.A. and Fradkov, A.L., Necessary and Sufficient Conditions for the Passivicability of Linear Distributed Systems, Autom. Remote Control, 2003, vol. 64, no. 4, pp. 517–530.

    MathSciNet  MATH  Google Scholar 

  13. Andrievskii, B.R. and Fradkov, A.L., Method of Passification in Adaptive Control, Estimation, and Synchronization, Autom. Remote Control, 2006, vol. 67, no. 11, pp. 1699–1731.

    MathSciNet  MATH  Google Scholar 

  14. Bobtsov, A.A. and Nikolaev, N.A., Fradkov Theorem-based Design of the Control of Nonlinear Systems with Functional and Parametric Uncertainties, Autom. Remote Control, 2005, vol. 66, no. 1, pp. 108–118.

    MathSciNet  MATH  Google Scholar 

  15. Bobtsov, A.A., Adaptivnoe i robastnoe upravlenie neopredelennymi sistemami po vykhodu (Adaptive and Robust Output Control of Uncertain Systems), St. Petersburg: Nauka, 2011.

    Google Scholar 

  16. Bobtsov, A.A., and Nikiforov, V.O., Adaptive Output Control: Problem Settings, Applied Problems, and Solutions, Nauchn.-Tekhn. Inform. Tekhnol, Mekh. Opt., 2013, vol. 1, no. 83, pp. 1–14.

    Google Scholar 

  17. Barkana, I., Comments on “Design of Strictly Positive Real Systems Using Constant Output Feedback,” IEEE Trans. Autom. Control, 2004, vol. 9, no. 11, pp. 2091–2093.

    MathSciNet  MATH  Google Scholar 

  18. Barkana, I. and Fradkov, A.L., Simple and Robust Adaptive Control, Int. J. Adaptive Control Signal Proc., 2014, vol. 28, no. 7–8, pp. 563–566.

    MathSciNet  MATH  Google Scholar 

  19. Willems, J.C., Dissipative Dynamical Systems. Part I: General Theory, Arch. Ration. Mech. Anal., 1972, vol. 45, no. 5, pp. 321–351.

    MATH  Google Scholar 

  20. Willems, J.C., Dissipative Dynamical Systems. Part II: Linear Systems with Quadratic Supply Rates, Arch. Ration. Mech. Anal., 1972, vol. 45, no. 5, pp. 352–393.

    MATH  Google Scholar 

  21. Desoer, C.A. and Vidyasagar, M., Feedback Systems: Input–Output Properties, New York: Academic, 1975. Translated under the title Sistemy s obratnoi svyaz’yu: vkhod-vykhodnye sootnosheniya, Moscow: Nauka, 1983.

    MATH  Google Scholar 

  22. Pogromsky, A., Passivity Based Design of Synchronizing Systems, Int. J. Bifurcat. Chaos Appl. Sci. Eng., 1998, vol. 8, no. 2, pp. 295–319.

    MathSciNet  MATH  Google Scholar 

  23. Fradkov, A.L. and Pogromsky, A.Y., Introduction to Control of Oscillations and Chaos, World Scientific Series on Nonlinear Science. Series A, vol. 35, Singapore: World Scientific, 1998.

    MATH  Google Scholar 

  24. Polushin, I.G., Fradkov, A.L., and Khill, D.D., Passivity and Passification of Nonlinear Systems, Autom. Remote Control, 2000, vol. 61, no. 3, pp. 355–388.

    MathSciNet  MATH  Google Scholar 

  25. Bao, J. and Lee, P.L., Process Control. The Passive Systems Approach, London: Springer-Verlag, 2007.

    Google Scholar 

  26. Proskurnikov, A.V. and Mazo, M., Jr., Simple Synchronization Protocols for Heterogeneous Networks: Beyond Passivity, IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 9426–9431.

    Google Scholar 

  27. Tôrres, L., Hespanha, J., and Moehlis, J., Synchronization of Identical Oscillators Coupled Through a Symmetric Network with Dynamics: A Constructive Approach with Applications to Parallel Operation of Inverters, IEEE Trans. Autom. Control, 2015, vol. 60, no. 12, pp. 3226–3241.

    MathSciNet  MATH  Google Scholar 

  28. Barkana, I., Teixeira, M., and Hsu, L., Mitigation of Symmetry in Positive Realness for Adaptive Control, Automatica, 2006, vol. 42, no. 9, pp. 1611–1616.

    MathSciNet  MATH  Google Scholar 

  29. Gusev, S.V. and Likhtarnikov, A.L., Kalman–Popov–Yakubovich Lemma and the S-Procedure: A Historical Essay, Autom. Remote Control, 2006, vol. 67, no. 11, pp. 1768–1810.

    MathSciNet  MATH  Google Scholar 

  30. Andrievskii, B.R., Stotskii, A.A., and Fradkov, A.L., Velocity Gradient Algorithms in Control and Adaptation, Autom. Remote Control, 1988, vol. 49, no. 12, pp. 1533–1564.

    MathSciNet  Google Scholar 

  31. Petrov, B.N., Rutkovskii, V.Yu., and Zemlyakov, S.D., Adaptivnoe koordinatno-parametricheskoe upravlenie nestatsionarnymi ob”ektami (Adaptive Coordinate-Parametric Control for Time-Varying Plants), Moscow: Nauka, 1980.

    MATH  Google Scholar 

  32. Byrnes, C.I., Isidori, A., and Willems, J.C., Passivity, Feedback Equivalence, and the Global Stabilization of Minimum Phase Nonlinear Systems, IEEE Trans. Autom. Control, 1991, vol. 36, no. 11, pp. 1228–1240.

    MathSciNet  MATH  Google Scholar 

  33. Fradkov, A.L. and Andrievsky, B., Combined Adaptive Controller for UAV Guidance, Eur. J. Control, 2005, vol. 11, no. 1, pp. 71–79.

    MathSciNet  MATH  Google Scholar 

  34. Fradkov, A.L., Passification of Linear Systems with Respect to Given Output, Proc. 2008 IEEE Conf. Decision Control (CDC 2008), Cancun, Mexico: IEEE, 2008, pp. 646–651.

    Google Scholar 

  35. Seron, M.M., Hill, D.J., and Fradkov A.L., Adaptive Passification of Nonlinear Systems, Proc. 33rd IEEE Conf. Dec. Control, Lake Buena Vista, Florida, 1994, 14–16 December, pp. 190–195.

    Google Scholar 

  36. Bar-Kana, I. and Kaufman, H., Global Stability and Performance of a Simplified Adaptive Algorithm, Int. J. Control, 1985, vol. 42, no. 6, pp. 1491–1505.

    MATH  Google Scholar 

  37. Bar-Kana, I., Parallel Feedforward and Simplified Adaptive Control, Int. J. Adaptive Control Signal Proc., 1987, vol. 1, no. 2, pp. 95–109. http://dx.doi.org/10.1002/acs.4480010202

    MATH  Google Scholar 

  38. Bar-Kana, I., Robust Simplified Adaptive Stabilization of Not Necessarily Minimum-Phase Systems, Transact. ASME, J. Dynam. Syst., Measurement Control, 1989, September, pp. 364–370.

    Google Scholar 

  39. BarKana, I., Simple Adaptive Control: A Stable Direct Model Reference Adaptive Control Methodology—Brief Survey, Proc. 9 IFAC Workshop on Adaptation and Learning in Control and Signal Processing, Saint Petersburg, Russia, 2007. http://www.ifac-papersonline.net/Detailed/30246.html

    Google Scholar 

  40. Kaufman, H., Barkana, I., and Sobel, K., Direct Adaptive Control Algorithms, New York: Springer-Verlag, 1998.

    Google Scholar 

  41. Iwai, Z. and Mizumoto, I., Realization of Simple Adaptive Control by Using Parallel Feedforward Compensator, Int. J. Control, 1994, vol. 59, no. 6, pp. 1543–1565.

    MathSciNet  MATH  Google Scholar 

  42. Ben Yamin, R., Yaesh, I., and Shaked, U., Simplified Adaptive Control with Guaranteed H Performance, Proc. 9 IFAC Workshop Adapt. Learning in Control Signal Proc. (ALCOSP’2007), vol. 9, Saint Petersburg: IFAC, 2007, 29–31 August. http://www.ifac-papersonline.net/Detailed/30250.html

    Google Scholar 

  43. Belkharraz, A.I. and Sobel, K., Simple Adaptive Control for Aircraft Control Surface Failures, IEEE Trans. Aerosp. Electron. Syst., 2007, vol. 43, no. 2, pp. 600–611.

    Google Scholar 

  44. Fradkov, A.L., Grigoriev, G., Junussov, I.A., and Selivanov, A., Decentralized Output Feedback Synchronization of Dynamical Networks, The Sixth Int. Conf. Different. Function. Different. Equat., 2011, pp. 22–23.

    Google Scholar 

  45. Ulrich, S., Hayhurst, D.L., Saenz-Otero, A., et al., Simple Adaptive Control for Spacecraft Proximity Operations, Proc. AIAA Guidance, Navigation, and Control Conf., AIAA SciTech Forum (AIAA 2014-1288), Maryland, USA, 2014, pp. 1–23.

    Google Scholar 

  46. Peaucelle, D., Fradkov, A.L., and Andrievsky, B., Passification-based Adaptive Control of Linear Systems: Robustness Issues, Int. J. Adapt. Control Signal Proc., 2008, vol. 22, no. 6, pp. 590–608.

    MathSciNet  MATH  Google Scholar 

  47. Ioannou, P. and Kokotović, P., Instability Analysis and Improvement of Robustness of Adaptive Control, Automatica, 1984, vol. 20, no. 5, pp. 583–594.

    MathSciNet  MATH  Google Scholar 

  48. Åström, K. and Wittenmark, B., Adaptive Control, New York: Addison-Wesley, 1989.

    Google Scholar 

  49. Kočvara, M. and Stingl, M., On the Solution of Large-Scale SDP Problems by the Modified Barrier Method Using Iterative Solvers, Math. Programm. Ser. B, 2007, vol. 109, no. 2–3, pp. 413–444.

    MathSciNet  MATH  Google Scholar 

  50. Peaucelle, D., and Fradkov, A.L., Robust Adaptive L2-Gain Control of Polytopic MIMO LTI Systems— LMI Results, Syst. Control Lett., 2008, vol. 57, no. 11, pp. 881–887.

    MATH  Google Scholar 

  51. Iwai, Z. and Mizumoto, I., Robust and Simple Adaptive Control System, Int. J. Control, 1992, vol. 55, no. 6, pp. 1453–1470.

    MathSciNet  MATH  Google Scholar 

  52. Peaucelle, D., Khan, H.M., and Pakshin, P.V., LMI-based Analysis of Robust Adaptive Control for Linear Systems with Time-varying Uncertainty, Autom. Remote Control, 2009, vol. 70, no. 9, pp. 1540–1552.

    MathSciNet  MATH  Google Scholar 

  53. Peaucelle, D., Drouot, A., Pittet, C., and Mignot, J., Simple Adaptive Control without Passivity Assumption and Experiments on Satellite Attitude Control Demeter Benchmark, IFAC Proc., 2011, vol. 44, no. 1, pp. 6535–6540. http://www.sciencedirect.com/science/article/pii/S1474667016446549

    Google Scholar 

  54. Eremin, E.L. and Chepak, L.V., Robust Nonlinear Control Algorithms for Time-Varying Scalar Plants, Informatika Sist. Upravlen., 2007, vol. 1, no. 13, pp. 149–160.

    Google Scholar 

  55. Bushmanova, Yu.A., Composite Control for Scalar Time-Varying Plants in Systems with Implicit Reference Model, Informatika Sist. Upravlen., 2007, vol. 2, no. 14, pp. 165–172.

    Google Scholar 

  56. Wang, N., Xu, W., and Chen, F., Robust Output Feedback Passification of Linear Systems with Unmodeled Dynamics, Circuit., Syst., Signal Proc., 2008, vol. 27, no. 5, pp. 645–656.

    MathSciNet  MATH  Google Scholar 

  57. Eremin, E.L., L-Dissipativity of a Hyperstable Control System under Structural Disturbance. II, Informatika Sist. Upravlen., 2007, vol. 1, no. 13, pp. 130–139.

    Google Scholar 

  58. Eremin, E.L., Adaptive Control System with Implicit Reference and Fast Correction Unit, Informatika Sist. Upravlen., 2012, vol. 1, no. 31, pp. 183–194.

    Google Scholar 

  59. Bobtsov, A.A., Output Control Algorithm with the Compensation of Biased Harmonic Disturbances, Autom. Remote Control, 2008, vol. 69, no. 8, pp. 1289–1296.

    MathSciNet  MATH  Google Scholar 

  60. Bobtsov, A.A., Adaptive Output Control with Compensation for a Harmonic Shifted Disturbance, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2009, vol. 1, pp. 45–48.

    MathSciNet  Google Scholar 

  61. Bobtsov, A.A., Kremlev, A.S., and Pyrkin, A.A., Compensation of Harmonic Disturbances in Nonlinear Plants with Parametric and Functional Uncertainty, Autom. Remote Control, 2011, vol. 72, no. 1, pp. 111–118.

    MathSciNet  MATH  Google Scholar 

  62. Ulrich, S. and Sasiadek, J.Z., Decentralized Simple Adaptive Control of Nonlinear Systems, Int. J. Adaptiv. Control Signal Proc., 2014, vol. 28, no. 7–8, pp. 750–763.

    MathSciNet  MATH  Google Scholar 

  63. Barkana, I., Output Feedback Stabilizability and Passivity in Nonstationary and Nonlinear Systems, Int. J. Adaptiv. Control Signal Proc., 2010, vol. 24, no. 7, pp. 568–591.

    MathSciNet  MATH  Google Scholar 

  64. Pakshin, P. and Peaucelle, D., LQR Parametrization of Static Output Feedback Gains for Linear Systems with Markovian Switching and Related Robust Stabilization and Passification Problems, Proc. 48th IEEE Conf. Decision Control jointly with 2009 28th Chinese Control Conf., CDC/CCC 2009, Shanghai, 2009, pp. 1157–1162.

    Google Scholar 

  65. Pakshin, P., Zhilina, T., and Peaucelle, D., Stabilization of Linear Systems with State Dependent Noise via Output Feedback and Its Application to Robust Control Design, IFAC Proc. Vol. (IFACPapersOnline), 2009, 19–21 August, vol. 14, no. 1, pp. 360–365, Proc. 14th Int. Conf. Methods Model. in Autom. Robot. (MMAR’09), Miedzyzdroje, Poland.

    Google Scholar 

  66. Razuvaeva, I.V. and Fradkov, A.L., Adaptive Control of Linear Systems Disturbed with Coordinate-Parametric White Noise Vestn. S.-Peterburg. Univ., Ser. 1. Mat. Mekhan. Astronom., 2009, vol. 3, pp. 61–69.

    Google Scholar 

  67. Fradkov, A.L., Razuvaeva, I., and Grigoriev, G., Passification Based Adaptive Control under Coordinate-Parametric White Noise Disturbances, IFAC Proc. Vol. (IFAC-PapersOnline), Proc. 8th IFAC Symp. Nonlinear Control Syst. (NOLCOS 2010), 2010, September 1–3, vol. 43, no. 14, pp. 659–664.

    Google Scholar 

  68. Sragovich, V.G., Adaptivnoe upravlenie (Adaptive Control), Moscow: Nauka, 1981.

    MATH  Google Scholar 

  69. Bobtsov, A., Nikolaev, N., and Slita, O., Adaptive Control of Libration Angle of a Satellite, IFAC Proc. Vol. (IFAC-PapersOnline), 2006, 28–30 June, vol. 1, no. 1, pp. 83–88, Proc. 1st IFAC Conf. Anal. Control Chaot. Syst. (CHAOS’06), Reims, France.

    Google Scholar 

  70. Bobtsov, A., Nikolaev, N., and Slita, O., Control of Chaotic Oscillations of a Satellite, Appl. Math. Mechan., 2007, vol. 28, no. 7, pp. 893–900.

    MathSciNet  MATH  Google Scholar 

  71. Bobtsov, A., Nikolaev, N., and Slita, O., Adaptive Control of Libration Angle of a Satellite, Mechatronics, 2007, vol. 17, no. 4–5, pp. 271–276.

    MATH  Google Scholar 

  72. Chen, L.-Q. and Liu, Y.-Z., Chaotic Attitude Motion of a Magnetic Rigid Spacecraft and Its Control, Int. J. Non-Linear Mechan., 2002, vol. 37, no. 3, pp. 493–504. http://www.sciencedirect.com/science/article/pii/S0020746201000233

    MathSciNet  MATH  Google Scholar 

  73. Luzi, A.-R., Biannic, J.-M., Peaucelle, D., Pittet, C., and Mignot, J., Structured Adaptive Attitude Control of a Satellite, Int. J. Adaptiv. Control Signal Proc., 2014, vol. 28, no. 7–8, pp. 664–685.

    MathSciNet  MATH  Google Scholar 

  74. Pittet, C., Luzi, A., Peaucelle, D., Biannic, J., and Mignot, J., In-flight Results of Adaptive Attitude Control Law for a Microsatellite, CEAS Space J., 2015, vol. 7, no. 2, pp. 291–302.

    Google Scholar 

  75. Ulrich, S., Sasiadek, J., and Barkana, I., Nonlinear Adaptive Output Feedback Control of Flexible-joint Space Manipulators with Joint Stiffness Uncertainties, J. Guidance, Control, Dynam., 2014, vol. 37, no. 6, pp. 1961–1975.

    Google Scholar 

  76. Fradkov, A.L., Andrievsky, B., and Peaucelle, D., Adaptive Passification-based Fault-tolerant Flight Control, IFAC Proc. Vol. (IFAC-PapersOnline), 2007, vol. 40, no. 7, pp. 715–720, Proc. 17th IFAC Sympo. Automatic Control in Aerospace (ACA’2007), Toulouse, France. https://doi.org/10.3182/20070625-5-FR-2916.00122

    Google Scholar 

  77. Fradkov, A.L., and Andrievsky, B., Passification-based Robust Flight Control Design, Automatica, 2011, vol. 47, no. 12, pp. 2743–2748.

    MathSciNet  MATH  Google Scholar 

  78. Andrievsky, B. and Tomashevich, S., Passification Based Signal-Parametric Adaptive Controller for Agents in Formation, IFAC Proc. Vol. (IFAC-PapersOnline), 2015, vol. 48, no. 11, pp. 222–226. https://doi.org/10.1016/j.ifacol.2015.09.187

    Google Scholar 

  79. Belyavskii, A.O. and Tomashevich, S.I., Synthesis of an Adaptive Control System for a Quadcopter with the Method of Passification, Upravlen. Bol’shimi Sist., 2016, vol. 63, pp. 155–181.

    Google Scholar 

  80. Tomashevich, S.I. and Belyavskii, A.O., A Two-Stage Testbed for Studying Control Algorithms for the Motion of a Quadcopter under Strong Wind, Izv. Ross. Akad. Raket Artill. Nauk, 2016, no. 2 (92), pp. 50–54.

    Google Scholar 

  81. Tomashevich, S. and Belyavskyi, A., Passification Based Simple Adaptive Control of Quadrotor, IFAC Proc. Vol. (IFAC-PapersOnline), 2016, vol. 49, pp. 281–286, Proc. 12th IFAC Int. Workshop Adaptat. Learning Control Signal Proc. (ALCOSP 2016), June 29–July 1, 2016, Eindhoven, The Netherlands.

    Google Scholar 

  82. Belyavskyi, A. and Tomashevich, S., Application of 2DOF Quadrotor-based Laboratory Testbed for Engineering Education, Proc. 25th Mediterran. Conf. Control Autom. (MED 2017), Valletta, Malta: IEEE, 2017, 3–6 July, pp. 939–944.

    Google Scholar 

  83. Tomashevich, S., Fradkov, A.L., Andrievsky, B., et al., Simple Adaptive Control of Quadrotor Attitude. Algorithms and Experimental Results, Proc. 25th Mediterran. Conf. Control Autom. (MED 2017), Valletta, Malta: IEEE, 2017, 3–6 July, pp. 933–938.

    Google Scholar 

  84. Shtessel, Y., Edwards, C., Fridman, L., and Levant, A., Sliding Mode Control and Observation, Ser.: Control Eng., New York: Birkhäuser, 2012.

    Google Scholar 

  85. Levant, A., Pridor, A., Gitizadeh, R., et al., Aircraft Pitch Control via Second Order Sliding Technique, AIAA J. Guidance, Control Dynam., 2000, vol. 23, no. 4, pp. 586–594.

    Google Scholar 

  86. Tomashevich, S., Borisov, O., Gromov, V., et al., Experimental Study on Robust Output Control for Quadcopters, Proc. 25th Mediterran. Conf. Control Autom. (MED 2017), Valletta, Malta, 2017, 3–6 July, pp. 1029–1034.

    Google Scholar 

  87. Tomashevich, S., and Belyavskyi, A., 2DOF Indoor Testbed for Quadrotor Identification and Control, Proc. 23rd Saint Petersburg Int. Conf. Integrat. Navigat. Syst. (ICINS 2016), Saint Petersburg, Russia, IEEE, 2016, pp. 373–376.

    Google Scholar 

  88. Matveev, A. and Savkin, A., Estimation and Control over Communication Networks, Boston: Birkhäuser, 2009.

    MATH  Google Scholar 

  89. Nair, G., Fagnani, F., Zampieri, S., and Evans, R., Feedback Control under Data Rate Constraints: An Overview, Proc. IEEE, 2007, April, no. 1, pp. 108–137.

    Google Scholar 

  90. Andrievskii, B.R., Matveev, A.S., and Fradkov, A.L., Control and Estimation under Information Constraints: Toward a Unified Theory of Control, Computation and Communications, Autom. Remote Control, 2010, vol. 71, no. 4, pp. 572–633.

    MathSciNet  MATH  Google Scholar 

  91. Nair, G. and Evans, R., Exponential Stabilisability of Finite-Dimensional Linear Systems with Limited Data Rates, Automatica, 2003, vol. 39, pp. 585–593.

    MathSciNet  MATH  Google Scholar 

  92. Matveev, A. and Pogromsky, A., Observation of Nonlinear Systems via Finite Capacity Channels: Constructive Data Rate Limits, Automatica, 2016, vol. 70, pp. 217–229.

    MathSciNet  MATH  Google Scholar 

  93. Fradkov, A.L., Andrievsky, B., and Evans, R., Controlled Synchronization under Information Constraints, Physic. Rev. E, 2008, September, vol. 78, pp. 0362101–6.

    Google Scholar 

  94. Fradkov, A.L., Andrievsky, B., and Evans, R.J., Synchronization of Nonlinear Systems under Information Constraints, Chaos, 2008, vol. 18, no. 3, pp. 037109.

    MathSciNet  MATH  Google Scholar 

  95. Fradkov, A.L., Andrievsky, B., and Evans, R.J., Adaptive Observer-Based Synchronization of Chaotic Systems with First-order Coder in the Presence of Information Constraints, IEEE Trans. Circuit. Syst. I, 2008, vol. 55, no. 6, pp. 1685–1694.

    MathSciNet  Google Scholar 

  96. Fradkov, A.L., Andrievsky, B., and Evans, R.J., Synchronization of Passifiable Lurie Systems via Limited-Capacity Communication Channel, IEEE Trans. Circuit. Syst. I, 2009, vol. 56, no. 2, pp. 430–439.

    MathSciNet  Google Scholar 

  97. Andrievskii, B.R. and Fradkov, A.L., Adaptive Synchronization of Nonlinear Systems of One Class under Limited Throughput of the Communication Channel, Upravlen. Bol’shimi Sist., 2009, vol. 25, pp. 48–83.

    Google Scholar 

  98. Andrievskii, B.R. and Fradkov, A.L., Method of Passification in Synchronization and State Estimation Problems for Nonlinear Systems Via a Nonlinear Communication Channel, Upravlen. Bol’shimi Sist., 2011, vol. 35, pp. 20–58.

    Google Scholar 

  99. Fradkov, A.L., Andrievsky, B. and Ananyevskiy, M.S., Passification Based Synchronization of Nonlinear Systems under Communication Constraints and Bounded Disturbances, Automatica, 2015, vol. 55, pp. 287–293.

    MathSciNet  MATH  Google Scholar 

  100. Fradkov, A.L., Andrievsky, B., and Evans, R., Chaotic Observer-based Synchronization under Information Constraints, Physic. Rev. E, 2006, vol. 73, p. 066209.

    MathSciNet  MATH  Google Scholar 

  101. Brockett, R.W. and Liberzon, D., Quantized Feedback Stabilization of Linear Systems, IEEE Trans. Autom. Control, 2000, vol. 45, no. 7, pp. 1279–1289.

    MathSciNet  MATH  Google Scholar 

  102. Liberzon, D., Hybrid Feedback Stabilization of Systems with Quantized Signals, Automatica, 2003, vol. 39, no. 9, pp. 1543–1554.

    MathSciNet  MATH  Google Scholar 

  103. Tatikonda, S. and Mitter, S., Control under Communication Constraints, IEEE Trans. Autom. Control, 2004, vol. 49, pp. 1056–1068.

    MathSciNet  MATH  Google Scholar 

  104. Nair, G.N., Evans, R.J., Mareels, I., and Moran, W., Topological Feedback Entropy and Nonlinear Stabilization, IEEE Trans. Automat. Control, 2004, September, vol. 49, no. 9, pp. 1585–1597.

    MathSciNet  MATH  Google Scholar 

  105. Goodman, D. and Gersho, A., Theory of an Adaptive Quantizer, IEEE Trans. Commun., 1974, August, vol. COM-22, no. 8, pp. 1037–1045.

    Google Scholar 

  106. Andrievsky, B., Adaptive Coding for Transmission of Position Information over the Limited-band Communication Channel, IFAC Proc. Vol. (IFAC-PapersOnline), 2007, vol. 40, pp. 447–452, Proc. 9th IFAC Workshop Adaptat. Learning Control and Signal Proc. (ALCOSP’2007), Saint Petersburg, Russia, August 29–31, 2007. http://www.IFAC-PapersOnLine.net

    Google Scholar 

  107. Gomez-Estern, F., Canudas de Wit, C., and Rubio, F.J.F., Adaptive Delta-Modulation Coding for Networked Controlled Systems, Proc. Amer. Contr. Conf. (ACC’07), New York: IEEE, 2007, July 11–13, pp. 4911–4916.

    Google Scholar 

  108. Fradkov, A.L., Andrievsky, B., and Peaucelle, D., Estimation and Control under Information Constraints for LAAS Helicopter Benchmark, IEEE Trans. Contr. Syst. Technol., 2010, September, vol. 18, no. 5, pp. 1180–1187.

    MATH  Google Scholar 

  109. Fradkov, A.L., Andrievsky, B., and Evans, R.J., Synchronization of Passifiable Lurie Systems via Limited-Capacity Communication Channel, IEEE Trans. Circuit. Syst. I, 2009, vol. 56, no. 2, pp. 430–439.

    MathSciNet  Google Scholar 

  110. Usik, E.V., Passification Based Synchronization of Cascade Lurie Systems with Quantized Signals, Proc. 2014 IEEE Conf. Control Appl. (CCA 2014), 2014, pp. 1964–1969.

    Google Scholar 

  111. Fradkov, A.L., Nijmeijer, H., and Markov, A., Adaptive Observer-Based Synchronization for Communication, Int. J. Bifurcat. Chaos, 2000, vol. 10, no. 12, pp. 2807–2813.

    MATH  Google Scholar 

  112. Efimov, D. and Fradkov, A.L., Adaptive Tuning to Bifurcation for Time-Varying Nonlinear Systems, Automatica, 2006, vol. 42, pp. 417–425.

    MathSciNet  MATH  Google Scholar 

  113. Fradkov, A.L., Andrievsky, B., and Boykov, K.B., Multipendulum Mechatronic Setup: Design and Experiments, Mechatron., 2012, vol. 22, no. 1, pp. 76–82.

    Google Scholar 

  114. Fradkov, A.L., Andrievsky, B., and Ananyevskiy, M.S., State Estimation and Synchronization of Pendula Systems over Digital Communication Channels, Eur. Phys. J. Special Topics, 2014, vol. 223, pp. 773–793.

    Google Scholar 

  115. Andrievsky, B. and Andrievsky, A., Experimental Evaluation of Synchronization-based Data Transmission Scheme for Multipendulum Setup, Cybernet. Phys., 2015, no. 1, pp. 5–10.

    Google Scholar 

  116. Andrievsky, B., Boikov, V.I., Fradkov, A.L., and Seifullaev, R.E., Mechatronic Laboratory Setup for Study of Controlled Nonlinear Vibrations, IFAC Proc. Vol. (IFAC-PapersOnline), 2016, vol. 49, no. 14, pp. 1–6, Proc. 6th IFAC Workshop on Periodic Control Syst. (PSYCO 2016), Eindhoven, The Netherlands, 2016, June 29–July01.

    Google Scholar 

  117. Chepak, L.V. and Mezentseva, A.V., Modeling an Adaptive-Robust System for a Scalar Plant with Control Delay, Vestn. Sarat. Gos. Tekhn. Univ., 2012, vol. 1, no. 2(64), pp. 188–193.

    Google Scholar 

  118. Bobtsov, A.A., Pyrkin, A.A., and Kolyubin, S.A., Simple Output Feedback Adaptive Control Based on Passification Principle, Int. J. Adaptive Control Signal Proc., 2014, vol. 28, no. 7–8, pp. 620–632.

    MathSciNet  MATH  Google Scholar 

  119. Fradkov, A.L., Grigoriev, G., and Selivanov, A., Decentralized Adaptive Controller for Synchronization of Dynamical Networks with Delays and Bounded Disturbances, Proc. 50th IEEE Conf. Dec. Control (CDC 2011), Orlando, USA: IEEE, 2011, December 12–15, pp. 1110–1115.

    Google Scholar 

  120. Fradkov, A.L. and Grigor’ev, G.K., Decentralized Adaptive Control of Synchronization of Dynamic System Networks at Bounded Disturbances, Autom. Remote Control, 2013, vol. 74, no. 5, pp. 829–844.

    MathSciNet  MATH  Google Scholar 

  121. Dzhunusov, I.A. and Fradkov, A.L., Synchronization in Networks of Linear Agents with Output Feedbacks, Autom. Remote Control, 2011, vol. 72, no. 5, pp. 1615–1626.

    MathSciNet  MATH  Google Scholar 

  122. Selivanov, A., Fridman, E., and Fradkov, A.L., Passification-based Adaptive Control: Uncertain Input and Output Delays, Automatica, 2015, vol. 54, pp. 107–113.

    MathSciNet  MATH  Google Scholar 

  123. Liu, K., and Fridman, E., Delay-Dependent Methods and the First Delay Interval, Syst. Control Lett., 2014, vol. 64, pp. 57–63.

    MathSciNet  MATH  Google Scholar 

  124. Fridman, E. and Shaked, U., Delay-Dependent Stability and H-Infinity Control: Constant and Time-Varying Delays, Int. J. Control, 2003, vol. 76, no. 1, pp. 48–60.

    MATH  Google Scholar 

  125. He, Y., Wang, Q.-G., Lin, C., and Wu, M., Delay-Range-Dependent Stability for Systems with Time-Varying Delay, Automatica, 2007, vol. 43, no. 2, pp. 371–376.

    MathSciNet  MATH  Google Scholar 

  126. Selivanov, A., Fradkov, A.L., and Fridman, E., Passification-Based Decentralized Adaptive Synchronization of Dynamical Networks with Time-Varying Delays, J. Franklin Inst., 2015, vol. 352, no. 1, pp. 52–72.

    MathSciNet  MATH  Google Scholar 

  127. Selivanov, A.A., Control over Synchronization of Networks with Nonlinearities and Delayed Connections, Vestn. Lobachevsk. Nizhn. Novgorod. Univ., 2013, no. 1(3), pp. 265–271. http://www.vestnik.unn.ru/ru/nomera?anum=6278

    Google Scholar 

  128. Selivanov, A., Junussov, I.A., and Fradkov, A.L. Robust and Adaptive Passification Based Consensus Control of Dynamical Networks, 11th IFAC Int. Workshop Adapt. Learning Control Signal Proc., Amsterdam: Elsevier, 2013, pp. 707–711.

    Google Scholar 

  129. De Vries, G., Diffusively Coupled Bursters: Effects of Cell Heterogeneity, Bull. Math. Biology, 1999, vol. 61, no. 5, pp. 1017.

    MATH  Google Scholar 

  130. Chow, C.C. and Kopell, N., Dynamics of Spiking Neurons with Electrical Coupling, Neural Comput., 2000, vol. 12, no. 7, pp. 1643–1678.

    Google Scholar 

  131. Fiedler, B., Handbook of Dynamical Systems, Amsterdam: Elsevier Science, 2002.

    MATH  Google Scholar 

  132. Coombes, S., Neuronal Networks with Gap Junctions: A Study of Piecewise Linear Planar Neuron Models, SIAM J. Appl. Dynam. Syst., 2008, vol. 7, no. 3, pp. 1101–1129.

    MathSciNet  MATH  Google Scholar 

  133. Wu, C.W. and Chua, L., Synchronization in an Array of Linearly Coupled Dynamical Systems, IEEE Trans. Circuit. Syst. I: Fundament. Theory Appl., 1995, vol. 42, no. 8, pp. 430–447.

    MathSciNet  MATH  Google Scholar 

  134. v.d. Steen, R. and Nijmeijer, H., Partial Synchronization of Diffusively Coupled Chua Systems: An Experimental Case Study, IFAC Conf. Anal. Control Chaotic Syst., 2006, pp. 1–6.

    Google Scholar 

  135. Rodriguez-Angeles, A. and Nijmeijer, H., Coordination of Two Robot Manipulators Based on Position Measurements Only, Int. J. Control, 2001, vol. 74, no. 13, pp. 1311–1323.

    MathSciNet  MATH  Google Scholar 

  136. Chung, S.-J. and Slotine, J.-J.E., Cooperative Robot Control and Concurrent Synchronization of Lagrangian Systems, IEEE Transact. Robot., 2009, vol. 25, no. 3, pp. 686–700.

    Google Scholar 

  137. Zanin, M., Buldu, J.M. and Boccaletti, S., Networks of Springs: A Practical Approach, Int. J. Bifurcat. Chaos, 2010, vol. 20, no. 3, pp. 937–942.

    MATH  Google Scholar 

  138. Usik, E.V., Synchronization of Nonlinear Lurie Systems on the Basis of Passification and Backstepping, Autom. Remote Control, 2012, vol. 73, no. 8, pp. 1305–1315.

    MathSciNet  MATH  Google Scholar 

  139. Luzi, A.-R., Fradkov, A.L., Biannic, J.-M., and Peaucelle, D., Structured Adaptive Control for Solving LMIs, IFAC Proc. Vol. (IFAC-PapersOnline), 2013, vol. 46, no. 11, pp. 426–431, Proc. 11th IFAC Int. Workshop Adaptat. Learning in Control Signal Proc., July 3–5, 2013, Caen, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Andrievskii.

Additional information

Original Russian Text © B.R. Andrievskii, A.A. Selivanov, 2018, published in Avtomatika i Telemekhanika, 2018, No. 6, pp. 3–48.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrievskii, B.R., Selivanov, A.A. New Results on the Application of the Passification Method. A Survey. Autom Remote Control 79, 957–995 (2018). https://doi.org/10.1134/S0005117918060012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117918060012

Keywords

Navigation