Advertisement

Automation and Remote Control

, Volume 79, Issue 4, pp 725–736 | Cite as

The Optimal Majority Threshold as a Function of the Variation Coefficient of the Environment

  • P. Yu. Chebotarev
  • V. A. Malyshev
  • Ya. Yu. Tsodikova
  • A. K. Loginov
  • Z. M. Lezina
  • V. A. Afonkin
Large Scale Systems Control
  • 9 Downloads

Abstract

Within the model of social dynamics determined by collective decisions in a stochastic environment (ViSE model), we consider the case of a homogeneous society consisting of classically rational economic agents (or homines economici, or egoists). We present expressions for the optimal majority threshold and the maximum expected capital increment as functions of the parameters of the environment. An estimate of the rate of change of the optimal threshold at zero is given, which is an absolute constant: \(\left( {\sqrt {2/\pi } - \sqrt {\pi /2} } \right)/2\) .

Keywords

social dynamics voting stochastic environment homines economici ViSE model pit of losses optimal majority threshold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borzenko, V.I., Lezina, Z.M., Loginov, A.K., Tsodikova, Ya.Yu., and Chebotarev, P.Yu., Strategies of Voting in Stochastic Environment: Egoism and Collectivism, Autom. Remote Control, 2006, vol. 67, no. 2, pp. 311–328.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    O’Boyle, E.J., The Origins of Homo Economicus: A Note, Storia del Pensiero Economico, 2009, vol. 6, pp. 1–8.Google Scholar
  3. 3.
    Chebotarev, P.Yu., Analytical Expression of the Expected Values of Capital at Voting in the Stochastic Environment, Autom. Remote Control, 2006, vol. 67, no. 3, pp. 480–492.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chebotarev, P.Yu., Loginov, A.K., Tsodikova, Ya.Yu., Lezina, Z.M., and Borzenko, V.I., Analysis of Collectivism and Egoism Phenomena within the Context of Social Welfare, Autom. Remote Control, 2008, vol. 71, no. 4, pp. 30–37.zbMATHGoogle Scholar
  5. 5.
    Chebotarev, P.Yu., Loginov, A.K., Tsodikova, Ya.Yu., Lezina, Z.M., and Borzenko, V.I., Snowball of Cooperation and Snowball Communism, Proc. Fourth Int. Conf. on Control Sciences, Moscow: Inst. Probl. Upravlen., 2009, pp. 687–699.Google Scholar
  6. 6.
    Nitzan, S. and Paroush, J., Optimal Decision Rules in Uncertain Dichotomous Choice Situations, Int. Econom. Rev., 1982, vol. 23, no. 2, pp. 289–297.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Nitzan, S. and Paroush, J., Are Qualified Majority Rules Special? Public Choice, 1984, vol. 42, no. 3, pp. 257–272.CrossRefGoogle Scholar
  8. 8.
    Rae, D.W., Decision-rules and Individual Values in Constitutional Choice, Am. Polit. Sci. Rev., 1969, vol. 63, no. 1, pp. 40–56.CrossRefGoogle Scholar
  9. 9.
    Chebotarev, P.Yu., Loginov, A.K., Tsodikova, Ya.Yu., and Lezina, Z.M., On the Optimal Voting Threshold, Proc. XIII Int. Acad. Conf. on Economic and Social Development, Yasin, E.G., Ed., Moscow: Higher School of Economics, 2013, vol. 4, pp. 123–132.Google Scholar
  10. 10.
    Mirkin, B.G., Group Choice, Fishburn, P.C., Ed., New York: Wiley, 1979. Original Russian edition: Mirkin, B.G., Problema gruppovogo vybora, Moscow: Nauka, 1974.Google Scholar
  11. 11.
    Azrieli, Y. and Kim, S., Pareto Efficiency and Weighted Majority Rules, Int. Econom. Rev., 2014, vol. 55, no. 4, pp. 1067–1088.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sekiguchi, T. and Ohtsuki, H., Effective Group Size of Majority Vote Accuracy in Sequential Decisionmaking, Jpn. J. Ind. Appl. Math., 2015, vol. 32, no. 3, pp. 595–614.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. Yu. Chebotarev
    • 1
    • 2
    • 3
  • V. A. Malyshev
    • 1
    • 2
    • 3
  • Ya. Yu. Tsodikova
    • 1
  • A. K. Loginov
    • 1
  • Z. M. Lezina
    • 1
  • V. A. Afonkin
    • 1
    • 2
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia
  3. 3.Kotelnikov Institute of Radioengineering and ElectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations