Automation and Remote Control

, Volume 79, Issue 4, pp 655–664 | Cite as

Generation of Alternative Solutions in the Redundancy Management Problem for Hardware Complexes

Control in Technical Systems
  • 1 Downloads

Abstract

We consider the problem of finding a set of alternative configurations of redundant complexes for onboard equipment and give an analytic solution. The redundancy problem is solved by finding admissible values of the “integration” matrix that contains the connections between input and output interfaces of individual components of the complex. For the case of a structured set of “integration” matrices, the set of nominal matrices and additions to them yields a complete set of solutions. We also give an illustrative example.

Keywords

hardware complex redundancy management objective function transition matrix matrix canonization matrix zero divisor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belousov, Yu.A., Fault-Tolerant Onboard Computational Systems: Classification and Estimation of Technical Characteristics, Aviakosm. Priborostroen., 2004, no. 11, pp. 17–24.Google Scholar
  2. 2.
    Tarasov, A.A., Funktsional’naya rekonfiguratsiya otkazoustoichivykh sistem (Functional Reconfiguration of Fault-Tolerant Systems), Moscow: Logos, 2012.Google Scholar
  3. 3.
    Firsov, G.V., A Method to Ensure Fault-Tolerance for Computations in Scalable Networked Onboard Computational Systems, Tr. Mosk. Aviats. Inst., 2006, no. 25. Available at http://www.mai.ru/science/trudy/published.php?ID=34068Google Scholar
  4. 4.
    Klepikov, V.I., Otkazoustoichivost’ raspredelennykh sistem upravleniya (Fault-Tolerance in Distributed Control Systems), Moscow: Zolotoe Sechenie, 2014.Google Scholar
  5. 5.
    Beglyarov, V.V., Bereza, A.N., and Lyashov, M.V., Analytical Survey of Reconfigurable Hybrid Evolutionary Hardware Systems, Izv. Yuzhn. Federal. Univ. Tekhn. Nauki, 2009, no. 12 (101), pp. 46–52.Google Scholar
  6. 6.
    Ageev, A.M., Bronnikov, A.M., Bukov, V.N., and Gamayunov, I.F., Supervisory Control Method for Redundant Technical Systems, J. Comput. Syst. Sci. Int., 2017, vol. 56(3), pp. 410–419.CrossRefMATHGoogle Scholar
  7. 7.
    Bukov, V.N., Bronnikov, A.M., Ageev, A.M., and Gamayunov, I.F., An Analytic Approach to Constructing Configurations of Technical Systems, Autom. Remote Control, 2017, vol. 78, no. 9, pp. 1600–1613.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Bronnikov, A.M., Embedding of Systems. Conditions of the Strict Insensitivity of Linear Systems to Nonextensive Structural Disturbances, Autom. Remote Control, 2004, vol. 65, no. 4, pp. 534–545.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bukov, V.N., Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (Embedding of Systems. An Analytic Approach to Analysis and Synthesis of Matrix Systems), Kaluga: Izd. Nauch. Lit. Bochkarevoi, 2006.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Federal State Official Military Educational Institution of Higher Education “Military Educational and Scientific Centre of the Air Force N.E. Zhukovsky and Y.A. Gagarin Air Force Academy,”VoronezhRussia

Personalised recommendations