Skip to main content
Log in

Stability and synchronization of oscillators: New Lyapunov functions

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The analysis of asymptotic stability of nonlinear oscillator is one of the classical problems in the theory of oscillations. Usually, it is solved by exploiting Lyapunov functions having the meaning of the full energy of the system. However, the Barbashin–Krasovskii theorem has to be used along this way, and no estimates can be found for the rate of convergence of the trajectories to equilibria points. In this paper we propose a different Lyapunov function which lacks transparent physical meaning. With this function, both the rate of convergence and the domain of attraction of equilibria points can be estimated. This result also enables an efficient analysis of another problem, synchronization of oscillations of two oscillators. We formulate conditions that guarantee frequency synchronization and, on top of that, phase synchronization. Generalizations to the case of arbitrary number of oscillators are also discussed; solution of this problem is crucial in the analysis of power systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tricomi, F., Integrazione di un’Equazione Differenziale Presentatasi in Electrotecnica, Annali della Scuola Normale Superiore di Pisa—Classe di Scienze 2, 1933, Ser. 2, no. 1, pp. 1–20.

    MATH  Google Scholar 

  2. Reissig, R., Sansone, G., and Conti, R., Qualitative Theorie nichtlinearer Differentialgleichungen (Qualitative Theory of Nonlinear Differential Equations), Edizioni Cremonese: Rome, 1963. Translated under the title Kachestvennaya teoriya nelineinykh differentsial’nykh uravnenii, Moscow: Nauka, 1974.

    MATH  Google Scholar 

  3. Andronov, A.A., Vitt, A.A., and Khaikin, S.E., Theory of Oscillations, Osford: Pergamon, 1966.

    MATH  Google Scholar 

  4. Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym polozheniem ravnovesiya (Stability of Nonlinear Systems with Nonunique Equilibrium Position), Moskow: Nauka, 1978.

    Google Scholar 

  5. Leonov, G.A., Vvedenie v teoriyu upravleniya (Control Theory. An Introduction), St. Petersburg: S.-Peterburg. Gos. Univ., 2004.

    MATH  Google Scholar 

  6. Polyak, B.T., Kuznetsov, O.N., and Chumachenko, V.V., Stability Study of a Power System with Unipolar Electromagnetic Brake, Autom. Remote Control, 2016, vol. 77, no. 9, pp. 1557–1566.

    Article  MATH  Google Scholar 

  7. Malkin, I.G., Teoriya ustoichivosti dvizheniya (Theory of Stability of Motion), Moscow: Nauka, 1966, 2nd ed.

    Google Scholar 

  8. Leonov, A.G. and Smirnova, V.B., Samosinkhronizatsiya dvukh neuravnoveshennykh rotorov, nakhodyashchikhsya na absolyutno zhestkoi platforme s odnoi stepen’yu svobody (Self-synchronization of Two Unbalanced Rotors on a Rigid Platform with One Degree of Freedom), in Zadachi analiza i sinteza nelineinykh kolebatel’nykh sistem (Analysis and Synthesis of Nonlinear Oscillatory Systems), Preprint 146, St. Petersburg: IPMASH RAN, 1999, pp. 33–42.

    Google Scholar 

  9. Blekhman, I.I., Synchronization in Science and Technology, New York: ASME Press, 1988.

    Google Scholar 

  10. Leonov, G.A. and Seledgy, S.M., Sistemy fazovoi sinkhronizatsii v analogovoi i tsifrovoi sistemotekhnike (Phase Locked Loops in Array Processors), St. Petersburg: Nevskii Dialekt, 2002.

    Google Scholar 

  11. Proskurnikov, A.V. and Parsegov, S.E., Problem of Uniform Deployment on a Line Segment for Second- Order Agents, Autom. Remote Control, 2016, vol. 77, no. 7, pp. 1248–1258.

    Article  MATH  Google Scholar 

  12. Choi, Y.P., Ha, S.Y., and Yun, S.B., Complete Synchronization of Kuramoto Oscillators with Finite Inertia, Phys. D: Nonlin. Phenom., 2011, vol. 240, no. 1, pp. 32–44.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dörfler, F. and Bullo, F., Synchronization in Complex Networks of Phase Oscillators: A Survey, Automatica, 2014, vol. 50, no. 6, pp. 1539–1564.

    Article  MathSciNet  MATH  Google Scholar 

  14. Problemy setevogo upravleniya (Problems of Networked Control), Fradkov, A.L., Ed., Moscow–Izhevsk: IKI, 2015.

  15. Pai, M.A., Energy Function Analysis for Power System Stability, Boston: Kluwer, 1989.

    Book  Google Scholar 

  16. Machowski, J., Bialek, J., and Bumby, J., Power System Dynamics: Stability and Control, Hoboken: Wiley, 2011.

    Google Scholar 

  17. Vu, T.L. and Turitsyn, K., Lyapunov Functions Family Approach to Transient Stability Assessment, IEEE Trans. Power Syst., 2016, vol. 31, no. 2, pp. 1269–1277.

    Article  Google Scholar 

  18. Barbashin, E.A. and Tabueva, V.A., Dinamicheskie sistemy s tsilindricheskim fazovym prostranstvom (Dynamical Systems with Cylindrical Phase Space), Moscow: Nauka, 1969.

    MATH  Google Scholar 

  19. Leonov, G.A., Hilbert’s 16th Problem for Quadratic Systems. New Methods Based on a Transformation to the Lienard Equation, Int. J. Bifurcat. Chaos, 2008, vol. 18, no. 3, pp. 877–884.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Polyak.

Additional information

Original Russian Text © B.T. Polyak, Ya.I. Kvinto, 2017, published in Avtomatika i Telemekhanika, 2017, No. 7, pp. 76–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyak, B.T., Kvinto, Y.I. Stability and synchronization of oscillators: New Lyapunov functions. Autom Remote Control 78, 1234–1242 (2017). https://doi.org/10.1134/S0005117917070050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917070050

Keywords

Navigation