Automation and Remote Control

, Volume 78, Issue 6, pp 1151–1158 | Cite as

Evasion of rigidly coordinated targets under phase constraints

  • A. I. Blagodatskikh
Mathematical Game Theory and Applications


In the group pursuit problem for rigidly coordinated targets pursued by a group of inertial objects, we construct a control that guarantees evasion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blagodatskikh, A.I, Evasion of Rigidly Coordinated Escaping Objects with Phase Constraints, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2004, no. 6, pp. 143–149.Google Scholar
  2. 2.
    Blagodatskikh, A.I, Weak Evasion of a Group of Coordinated Evaders, J. Appl. Math. Mech., 2005, vol. 6, pp. 891–899.CrossRefMATHGoogle Scholar
  3. 3.
    Grigorenko, N.L., Matematicheskie metody upravleniya neskol’kimi dinamicheskimi protsessami (Mathematical Methods for Control over Several Dynamic Processes), Moscow: Mosk. Gos. Univ., 1990.Google Scholar
  4. 4.
    Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games), Moscow: Nauka, 1974.MATHGoogle Scholar
  5. 5.
    Petrosyan, L.A., Differentsial’nye igry presledovaniya (Differential Pursuit Games), Leningrad: Leningr. Gos. Univ., 1977.MATHGoogle Scholar
  6. 6.
    Satimov, N.Yu. and Rikhsiev, B.B, Quasilinear Differential Evasion Games, Differ. Uravn., 1978, vol. 14, no. 6, pp. 1047–1052.MathSciNetMATHGoogle Scholar
  7. 7.
    Satimov, N.Yu. and Rikhsiev, B.B., Metody resheniya zadachi ukloneniya ot vstrechi v matematicheskoi teorii upravleniya (Methods of Solution of Evasion Problems in Mathematical Control Theory), Tashkent: Fan, 2000.MATHGoogle Scholar
  8. 8.
    Chikrii, A.A., Konfliktno upravlyaemye protsessy (Conflict Controlled Processes), Kiev: Naukova Dumka, 1992.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Udmurt State UniversityIzhevskRussia

Personalised recommendations