Advertisement

Automation and Remote Control

, Volume 78, Issue 6, pp 1128–1137 | Cite as

Motion control problems for multimode unmanned aerial vehicles

  • A. S. Syrov
  • A. M. Puchkov
  • V. Yu. Rutkovskii
  • V. M. Glumov
Control Sciences
  • 27 Downloads

Abstract

This paper considers flight control specifics for modern unmanned aerial vehicles with paths described by a wide range of altitudes, including super-aerodynamic flights. It is noted that this type of aerial vehicles belongs to multimode dynamic objects with varying characteristics in the course of their operation. Adaptive control methods used in control systems for unmanned aerial vehicles are overviewed. Finally, adaptive control capabilities are studied for the vehicle’s angular position in gliding and cruising modes under combined jet reaction and aerodynamic control.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buran. Osnovy proektirovaniya intellektual’noi sistemy upravleniya orbital’nym korablem na atmosfernom uchastke poleta (Buran. Design Principles of Intelligent Control System for Orbital Spacecraft at Atmospheric Phase), Syrov, A.S., Ed., Moscow: MOKB Mars, 2013.Google Scholar
  2. 2.
    Puchkov, A.M., Gorbunov, N.I., Dubinkin, I.M., and Trufakin, V.A, Synthesis of Air-Gas-Dynamic Control for Lateral Movement of the Aerospace Vehicle in Automatic and Manual Flight Modes, in Voprosy aviatsionnoi nauki i tekhniki (Questions of Aviation Science and Engineering), Moscow: NPO Molniya, 1989, no. 2, pp. 81–118.Google Scholar
  3. 3.
    Abadeev, E.M., Balyko, Yu.P., Lyapunov, V.V., et al., Osnovy formirovaniya oblika sistem upravleniya aviatsionnogo raketnogo vooruzheniya (Basic Design Principles of Control Systems for Airborne Missile Weaponry), Trusov, V.V., Ed., Moscow: Dashkov i Ko, 2012.Google Scholar
  4. 4.
    Lebedev, A.A. and Chernobrovkin, L.S., Dinamika poleta bespilotnykh letatel’nykh apparatov (Flight Dynamics of Unmanned Aerial Vehicles), Moscow: Mashinostroenie, 1973.Google Scholar
  5. 5.
    Aerodinamika, ustoichivost’ i upravlyaemost’ sverkhzvukovykh samoletov (Aerodynamics, Stability and Controllability of Supersonic Aircrafts), Byushgens, G.S., Ed., Moscow: Nauka, 1998.Google Scholar
  6. 6.
    Kolesnikov, A.A., Novye nelineinye metody upravleniya poletom (New Methods on Nonlinear Flight Control), Moscow: Fizmatlit, 2013.Google Scholar
  7. 7.
    Puchkov, A.M. and Trufakin, V.A, The Principle of Non-Deficit Control of Flying Apparatus and Some Satisfaction Criterion, Aviakosm. Tekhn. Tekhnolog., 1996, no. 3. pp. 36–41.Google Scholar
  8. 8.
    Syrov, A.S., Puchkov, A.M., Zelikin, M.U., and Stebletsov, V.G., Privody sistem avtomatiki i upravleniya poletom letatel’nykh apparatov. Defitsit upravleniya, energetika, raschet parametrov (Actuators for Automatic Flight Control Systems of Aircrafts. Control Deficit, Energetics, Parameter Calculation), Moscow: Mosk. Aviats. Inst., 1997.Google Scholar
  9. 9.
    Syrov, A.S., Puchkov, A.M., Seleznev, A.E., and Glumov, V.M., Algorithms of Modernized Coordinated Control of an Unmanned Aerial Vehicle, Tr. 12-ogo Vseross. soveshchaniya po problemam upravleniya (Proc. 12th All-Russian Meeting on Control Problems), Moscow: Inst. Problem Upravlen., 2014, pp. 3407–3416.Google Scholar
  10. 10.
    Spravochnik po teorii avtomaticheskogo upravleniya (A Handbook on Automatic Control Theory), Krasovskii, A.A., Ed., Moscow: Nauka, 1987.Google Scholar
  11. 11.
    Syrov, A.S., Puchkov, A.M., Popov, B.N., et al., A Method of Generating Adaptive Signal for Gliding Motion Stabilization of Unmanned Aerial Vehicle and a Device for Implementing This Method, RFPatent 2 460 113, Byull. Izobret., 2012, no. 24.Google Scholar
  12. 12.
    Rutkovsky, V.Yu., Glumov, V.M., and Sukhanov, V.M, Precision Control of Non-Stationary Aerial Vehicles by Roll Angle, Probl. Upravlen., 2011, no. 5, pp. 82–87.Google Scholar
  13. 13.
    Zemlyakov, S.D. and Rutkovskii, V.Yu., On the Synthesis of Self-Adjusting Control Systems with a Reference Model, Autom. Remote Control, 1966, vol. 27, no. 3, pp. 407–414.Google Scholar
  14. 14.
    Emel’yanov, S.V., Izbrannye trudy v dvukh tomakh (Selected Works in Two Volumes), Korovin, S.K., Ed., Moscow: Mosk. Gos. Univ.,2009, vol. 1.Google Scholar
  15. 15.
    Eskin, A.F., Osnovy proektirovaniya sistem stabilizatsii vysokotochnykh raket Sukhoputnykh voisk (Design Fundamentals for Stabilization Systems of High-Precision Missiles for Land Forces), Moscow: Mosk. Gos. Tekn. Univ., 2009.Google Scholar
  16. 16.
    Syrov, A.S., Puchkov, A.M., and Zhdanovich, N.P, A Method of Generating Digital-Analog Control Signal for Onboard Angular Motion Control Systems of Unmanned Aerial Vehicles and a Device for Implementing This Method, RFPatent 2 437 107, Byull. Izobret., 2013, no. 2.Google Scholar
  17. 17.
    Glumov, V.M., Zemlyakov, S.D, Puchkov., A.M., and Rutkovskii, V.Yu., Angular Position Control of Non-stationary Aerial Vehicles with Variable Effectiveness of Control Moments, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2000, no. 1, pp. 120–134.Google Scholar
  18. 18.
    Syrov, A.S., Puchkov, A.M., Popov, B.N., et al., A Method of Generating Integral Signal of Drone Gliding Stabilization and A Device for Implementing This Method, RFPatent 2 495 744, Byull. Izobret., 2012, no. 24.Google Scholar
  19. 19.
    Syrov, A.S., Puchkov, A.M., and Cherepanova, V.E., The Principle of Dynamic Heteropolar Astatic Regulation for Automatic Control Systems of Aerial Vehicles, Tr. 3 Mezh. konf. po problemam upravleniya (Proc. 3 Int. Conf. on Control Problems), Moscow: Inst. Problem Upravlen., 2006.Google Scholar
  20. 20.
    Puchkov, A.M., Kareva, E.M., and Glumov, V.M, Synthesis and Digital Implementation of an Adaptive Control Algorithm for an Aerial Vehicle, Proc. Int. Conf. “System Identification and Control Problems” (SICPRO’12), Moscow: Inst. Problem Upravlen., 2012, pp. 896–906.Google Scholar
  21. 21.
    Razygraev, A.P., Osnovy upravleniya poletom kosmicheskikh apparatov (Fundamentals of Flight Control of Spacecrafts), Moscow: Mashinostroenie, 1990.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. S. Syrov
    • 1
  • A. M. Puchkov
    • 1
  • V. Yu. Rutkovskii
    • 2
  • V. M. Glumov
    • 2
  1. 1.Mars Moscow Experimental Design BureauMoscowRussia
  2. 2.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations