Automation and Remote Control

, Volume 78, Issue 6, pp 1115–1127 | Cite as

The models and structure of onboard measurements of three-dimensional physical fields

  • T. A. Vovenko
  • A. K. Volkovitskiy
  • B. V. Pavlov
  • E. V. Karshakov
  • M. Yu. Tkhorenko
Control Sciences


The airborne measurement systems of geophysical fields are considered. The applicability of such systems in navigation and geophysics is analyzed. The existing gravimetric, magnetometric and electromagnetic systems are briefly overviewed. The structure of the airborne measurement systems of geophysical fields and the associated mathematical models are discussed in detail. Finally, the issues of data processing are studied and the solution approaches to the ill-posed problems are described.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sander, S., Argyle, M., Elieff, S., Ferguson, S., Lavoie, V., and Sander, L., The AIRGrav Airborne Gravity System, Abstr. ASEG-PESA Airborne Gravity 2004 Workshop, Lane, R., Ed., Australia, 2004, pp. 49–54.Google Scholar
  2. 2.
    Brady, N., A Turnkey Airborne Gravity System—Concept to Reality, Abstr. ASEG-PESA Airborne Gravity 2010 Workshop, Lane, R., Ed., Australia, 2010, pp. 28–36.Google Scholar
  3. 3.
    Krasnov, A.A., Sokolov, A.V., and Elinson, L.S, A New Air-Sea Shelf Gravimeter of the Chekan Series, Girosk. Navigats., 2014, no. 1(84), pp. 26–34.Google Scholar
  4. 4.
    Olson, D., GT-1A and GT-2A Airborne Gravimeters: Improvements in Design, Operation, and Processing from 2003 to 2010, Abstr. ASEG-PESA Airborne Gravity 2010 Workshop, Lane, R., Ed., Australia, 2010, pp. 152–171.Google Scholar
  5. 5.
    Golovan, A.A., Bolotin, Yu.V., and Parusnikov, N.A, The Test Results of Modern Russian Airborne Gravity Complexes, Razvedka Okhrana Nedr, 2002, no. 2, pp. 18–20.Google Scholar
  6. 6.
    Mikhlin, B.Z., Seleznev, V.P., and Seleznev, A.V., Geomagnitnaya navigatsiya (Geomagnetic Navigation), Moscow: Mashinostroenie, 1976.Google Scholar
  7. 7.
    Dmitriev, S.P., Vysokotochnaya morskaya navigatsiya (High-Precision Marine Navigation), Leningrad: Sudostroenie, 1991.Google Scholar
  8. 8.
    May, M.B, Gravity Navigation, IEEE PLANS (Position Location and Navigation Symp.), San Diego, November 6–9, 1978, pp. 212–218.Google Scholar
  9. 9.
    Zhang, X. and Zhao, Y, Analysis of Key Technologies in Geomagnetic Navigation, Seventh Intern. Symp. on Instrumentation and Control Technology: Measurement Theory and Systems and Aeronautical Equipment, Proc. SPIE, 2008, vol. 7128, pp. (71282J–1)–(71282J-6).CrossRefGoogle Scholar
  10. 10.
    Dzhandzhgava, G.I., Avgustov, L.I., and Soroka, A.I, Navigation Using the Anomaly Gravitational Field of the Earth. Structure Choice and Justification of the Requirements Applied to Navigation System Subject to the Existing Mapping Software and Hardware, Aviakosmich. Priborostroen., 2002, no. 6, pp. 63–68.Google Scholar
  11. 11.
    Scherbinin, V.V. and Shevtsova, E.V, The Color Pictures Fragmentation Algorithms for Formation of Different Seasonal Reference Images of the Aircraft Correlation-Extremal Navigation Systems, Izv. Yuzhn. Fed. Univ., Tekhn. Nauki, 2010, no. 3, pp. 87–92.Google Scholar
  12. 12.
    Krasovskii, A.A., Beloglazov, I.N., and Chigin, G.P., Teoriya korrelyatsionno-ekstremal’nykh sistem (The Theory of Correlation-Extremal Navigation Systems), Moscow: Nauka, 1979.Google Scholar
  13. 13.
    Korrelyatsionno-ekstremal’nye sistemy (Correlation-Extremal Systems), Tarasenko, V.P., Ed., Tomsk: Tomsk. Gos. Univ., 1986.Google Scholar
  14. 14.
    Dmitriev, S.P. and Stepanov, O.A, Multialternative Filtration in Processing of Navigational Data, Radiotekhnika, 2004, no. 7, pp. 11–17.Google Scholar
  15. 15.
    Stepanov, O.A. and Toropov, A.B, Sequential Monte Carlo Methods for Terrain-Aided Navigation, Izv. Vuzov. Priborostroen., 2010, vol. 53, no. 10, pp. 49–54.Google Scholar
  16. 16.
    Bergman, N., Recursive Bayesian Estimation. Navigation and Tracking Applications, Linkoping: Linkoping Univ., 1999.Google Scholar
  17. 17.
    OAO Ramenskoe Instrument Design Engineering Bureau. (Accessed March 24, 2015).Google Scholar
  18. 18.
    Hardwick, C.D., Non-orientated Cesium Sensors for Airborne Magnetometry and Gradiometry, Geophysics, 1984, vol. 49, no. 11, pp. 2024–2031.CrossRefGoogle Scholar
  19. 19.
    Noriega, G, Aeromagnetic Compensation in Gradiometry—Performance, Model Stability, and Robustness, IEEE Geosci. Remote Sensing Lett., 2014, vol. PP, no. 99 (early publication), pp. 1–5.Google Scholar
  20. 20.
    Dransfield, M., Le Roux, T., and Burrows, D., Airborne Gravimetry and Gravity Gradiometry at Fugro Airborne Surveys, Abstr. ASEG-PESA Airborne Gravity 2010 Workshop, Lane, R., Ed., Australia, 2010, pp. 49–57.Google Scholar
  21. 21.
    Murphy, C.A., Recent Developments with Air-FTG, Abstr. ASEG-PESA Airborne Gravity 2010 Workshop, Lane, R., Ed., Australia, 2010, pp. 142–151.Google Scholar
  22. 22.
    Avgustov, L.I. and Soroka, A.I, Airborne Gravivariometer. Experience of the Development and Test Results, Mekhatron., Avtomatiz., Upravlen., 2009, no. 3, pp. 51–56.Google Scholar
  23. 23.
    Killeen, P.G., Exploration Trends and Developments in 2007, Sylvester, B., Ed., Northern Miner,2007, vol. 93, no. 1.Google Scholar
  24. 24.
    Brodie, R., Green, A., and Munday, T., Constrained Inversion of Resolve Electromagnetic Data, Riverland, South Australia: CRC LEME Open File Report 175,2004.Google Scholar
  25. 25.
    Fountain, D., 60 Years of Airborne EM—Focus on the Last Decade, Proc. 5th Int. Conf. on Airborne Electromagnetics (AEM2008), Haikko Manor, Finland, 2008.Google Scholar
  26. 26.
    Telford, W.M., Geldart, L.R., and Sheriff, R.E., Applied Geophysics, Cambridge: Cambridge Univ. Press, 2004.Google Scholar
  27. 27.
    Instruktsiya po elektrorazvedke: nazemnaya elektrorazvedka, skvazhinnaya elektrorazvedka, shakhtorudnichnaya elektrorazvedka, aeroelektrorazvedka, morskaya elektrorazvedka (Manual on Geoelectrometry: Ground Geoelectrometry, Spinner Geoelectrometry, Mine Geoelectrometry, Airborne Geoelectrometry, and Marine Geoelectrometry), Reihert, L.A., Ed., Leningrad, Nedra, 1984.Google Scholar
  28. 28.
    Karshakov, E.V, Calibration Problem for Electromagnetic Relative Positioning System, Upravlen. Bol’sh. Sist., 2012, no. 37, pp. 250–268.Google Scholar
  29. 29.
    International Geomagnetic Reference Field, URL: (Accessed February 2, 2015).Google Scholar
  30. 30.
    Torge, W., Gravimetry, Berlin: W. de Gryuer, 1989. Translated under the title Gravimetriya, Moscow: Mir, 1999.MATHGoogle Scholar
  31. 31.
    Tkhorenko, M.Yu., Karshakov, E.V., Pavlov, B.V., and Kozlov, A.V, Algorithm to Position an Object Moving in the Low-frequency Electromagnetic Field, Autom. Remote Control, 2015, vol. 76, no. 11, pp. 2033–2044.CrossRefMATHGoogle Scholar
  32. 32.
    Tikhonov, A.N, On the Stability of Inverse Problems, Dokl. Akad. Nauk SSSR, 1943, vol. 39, no. 5, pp. 195–198.MathSciNetGoogle Scholar
  33. 33.
    Ivanov, V.K, On Linear Ill-Posed Problems, Dokl. Akad. Nauk SSSR, 1962, vol. 145, no. 2, pp. 270–272.MathSciNetMATHGoogle Scholar
  34. 34.
    Lavrentiev, M.M, On the Cauchy Problem for Laplace’s Equation, Izv. AN SSSR, Ser. Mat., 1956, vol. 20, no. 6, pp. 819–842.MathSciNetGoogle Scholar
  35. 35.
    Khalfin, L.A, Information Theory of Geophysical Interpretation, Dokl. Akad. Nauk SSSR, 1958, vol. 122, no. 6, pp. 1007–1010.Google Scholar
  36. 36.
    Franklin, J.N., Well-Posed Stochastic Extensions of Ill-Posed Linear Problems, J. Math. Appl., 1970, vol. 31, pp. 682–716.MathSciNetMATHGoogle Scholar
  37. 37.
    Tarkhov, A.G., Bondarenko, V.M., and Nikitin, A.A., Kompleksirovanie geofizicheskikh metodov (Integrated Geophysics), Moscow: Nedra, 1982.Google Scholar
  38. 38.
    Dmitriev, V.I., Zhdanov, M.S., Morozov, V.A., et al., Vychislitel’naya matematika i tekhnika v razvedochnoi geofizike (Calculus Mathematics and Techniques in Exploration Geophysics), Moscow: Nedra, 1990.Google Scholar
  39. 39.
    Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation, Philadelphia: SIAM, 2005.CrossRefMATHGoogle Scholar
  40. 40.
    Forsberg, R, A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling, Ohio State Univ., Sci. Report no. 5, 1984.Google Scholar
  41. 41.
    Bolotin, Yu.V. and Popelenskii, M.Yu., Accuracy Analysis of Airborne Gravity when Gravimeter Parameters Are Identified in Flight, Fund. Prikl. Mat., 2005, vol. 11, no. 7, pp. 167–180.Google Scholar
  42. 42.
    Karshakov, E.V. and Kharichkin, M.V, A Stochastic Estimation Problem at Aeromagnetometer Deviation Compensation, Autom. Remote Control, 2008, vol. 69, no. 7, pp. 1162–1170.MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Volkovitskiy, A.K., Karshakov, E.V., Moilanen, E.V., and Pavlov, B.V, IntegrationMagnetic Gradiometer Correlation-Extremal and Inertial Navigation Systems Coupling, Proc. XIX St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg, 2012, pp. 169–171.Google Scholar
  44. 44.
    Volkovitskiy, A.K., Karshakov, E.V., and Pavlov, B.V, Positioning of Moving Objects in Low-Frequency Electromagnetic Field. I. Basic Algorithm of Relative Positioning, Probl. Upravlen., 2013, no. 1, pp. 57–62.Google Scholar
  45. 45.
    Volkovitskiy, A.K., Karshakov, E.V., and Pavlov, B.V, The Distribution of Soil Effective Resistivity as a Navigation Field for Correlation-Extremal Systems, Izv. Yuzhn. Fed. Univ., Tekhn. Nauki, 2012, no. 3, pp. 113–119.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. A. Vovenko
    • 1
  • A. K. Volkovitskiy
    • 1
  • B. V. Pavlov
    • 1
  • E. V. Karshakov
    • 1
  • M. Yu. Tkhorenko
    • 1
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations