Automation and Remote Control

, Volume 78, Issue 6, pp 1101–1114 | Cite as

Genetic algorithm for the resource-constrained project scheduling problem

Optimization, System Analysis, and Operations Research
  • 64 Downloads

Abstract

We consider the resource-constrained project scheduling problem with respect to the makespan minimization criterion. The problem accounts for technological constraints of activities precedence together with resource constraints. We propose a genetic algorithm with two versions of crossovers based on the idea of most rational use of constrained resources. The crossovers uses a heuristic that takes into account the degree of criticality for the resources, which is derived from the solution of a relaxed problem with a constraint on accumulative resources. A numerical experiment with examples from the PCPLIB library has shown that the proposed algorithm has competitive quality. For some examples from the j120 test series the best known solutions were improved and for j60 (50 000 and 500 000 iterations) and for j120 (500 000 iterations) we have obtain the best average deviations of the solutions from the critical path value.

Keywords

resource-constrained project scheduling problem renewable resources genetic algorithms PCPLIB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herroelen, W., Demeulemeester, E., and De Reyck, B., A Classification Scheme for Project Scheduling, in Project Scheduling-Recent Models, Algorithms and Applications, Weglarz, J., Ed., Bostont: Kluwer, 1998, pp. 1–26.Google Scholar
  2. 2.
    Brucker, P., Drexl, A., Mhring, R., et al., Resource-Constrained Project Scheduling: Notation, Classification, Models, and Methods, Eur. J. Oper. Res., 1999, vol. 112, no. 1, pp. 3–41.CrossRefMATHGoogle Scholar
  3. 3.
    Kolisch, R. and Hartmann, S., Heuristic Algorithms for Solving the Resource-Constrained Project Scheduling Problem: Classification and Computational Analysis, in Project Scheduling: Recent Models, Algorithms and Applications, Weglarz, J., Ed., Berlin: Kluwer, 1999, pp. 147–178.CrossRefGoogle Scholar
  4. 4.
    Herroelen, W., De Reyck, B., and Demeulemeester, E, Resource-Constrained Project Scheduling: A Survey of Recent Developments, Comput. Oper. Res., 1998, vol. 25, no. 4, pp. 279–302.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kolisch, R. and Padman, R, An Integrated Survey of Deterministic Project Scheduling, Omega, 2001, vol. 49, no. 3, pp. 249–272.CrossRefGoogle Scholar
  6. 6.
    Kolisch, R. and Hartmann, S, Experimental Investigation of Heuristics for Resource-Constrained Project Scheduling: An Update, Eur. J. Oper. Res., 2006, vol. 174, pp. 23–37.CrossRefMATHGoogle Scholar
  7. 7.
    Hartmann, S. and Briskorn, D, A Survey of Variants and Extentions of the Resource-Constrained Project Scheduling Problem, Eur. J. Oper. Res., 2010, vol. 207, pp. 1–14.CrossRefMATHGoogle Scholar
  8. 8.
    Blazewicz, J., Lenstra, J.K., and Rinnoy Kan, A.H.G, Scheduling Subject to Resource Constraints: Classification and Complexity, Discrete Appl. Math., 1983, vol. 5, no. 1, pp. 11–24.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gimadi, E.Kh., On Some Mathematical Models and Methods for Planning Large-Scale Projects, Models and Optimization Methods, in Proc. AN USSR Sib. Branch, Math. Inst., Novosibirsk: Nauka, 1988, vol. 10, pp. 89–115.MathSciNetGoogle Scholar
  10. 10.
    Gimadi, E.Kh., Zalyubovskii, V.V., and Sevast’yanov, S.V, Polynomial Solvability of Scheduling Problems with Storable Resources and Deadlines, Diskret. Anal. Issled. Oper., Ser. 2, 2000, vol. 7, no. 1, pp. 9–34.MathSciNetGoogle Scholar
  11. 11.
    Brucker, P., Knust, S., Schoo, A., et al., A Branch and Bound Algorithm for the Resource-Constrained Project Scheduling Problem, Eur. J. Oper. Res., 1998, vol. 107, pp. 272–288.CrossRefMATHGoogle Scholar
  12. 12.
    Demeulemeester, E. and Herroelen, W, A Branch-and-Bound Procedure for the Multiple Resource-Constrained Project Scheduling Problem, Manage. Sci., 1992, vol. 38, pp. 1803–1818.CrossRefMATHGoogle Scholar
  13. 13.
    Demeulemeester, E. and Herroelen, W, New Benchmark Results for the Resource-Constrained Project Scheduling Problem, Manage. Sci., 1997, vol. 43, pp. 1485–1492.CrossRefMATHGoogle Scholar
  14. 14.
    Mingozzi, A., Maniezzo, V., Ricciardelli, S., et al., An Exact Algorithm for the Resource-Constrained Project Scheduling Problem Based on a New Mathematical Formulation, Manage. Sci., 1998, vol. 44, pp. 715–729.Google Scholar
  15. 15.
    Sprecher, A, Scheduling Resource-Constrained Projects Competitively at Modest Resource Requirements, Manage. Sci., 2000, vol. 46, pp. 710–723.CrossRefMATHGoogle Scholar
  16. 16.
    Hartmann, S, A Competitive Genetic Algorithm for the Resource-Constrained Project Scheduling, Naval Res. Logistics, 1998, vol. 45, pp. 733–750.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Alcaraz, J. and Maroto, C, A Robust Genetic Algorithm for Resource Allocation in Project Scheduling, Ann. Oper. Res., 2001, vol. 102, pp. 83–109.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Hartmann, S, A Self-Adaptive Genetic Algorithm for Project Scheduling under Resource Constraints, Naval Res. Logistics, 2002, vol. 49, pp. 433–448.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Tormos, P. and Lova, A, A Competitive Heuristic Solution Techniques for Resource-Consrtained Project Scheduling, Ann. Oper. Res., 2001, vol. 102, pp. 65–81.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Coelho, J. and Tavares, L., Compatative Analysis of Metaheuristics for the Resource Constrained Project Scheduling Problem, Technical Report, Department of Civil Engeniiring, Instituto Superior Tecnico, Portugal, 2003.Google Scholar
  21. 21.
    Kochetov, Yu. and Stolyar, A., Evolutionary Local Search with Variable Neighborhood for the Resource-Constrained Project Scheduling Problem, Proc. 3th Int. Workshop of Computer Science and Information Technologies, Russia, 2003, pp. 96–99.Google Scholar
  22. 22.
    Debels, D. and Vanhoucke, M, A Bi-population Based Genetic Algorithm for the Resource-Constrained Project Scheduling Problem, ICCSA, 2005, vol. 4, pp. 378–387.MATHGoogle Scholar
  23. 23.
    Debels, D. and Vanhoucke, M., Decomposition-based Genetic Algorithm for the Resource-Consrtained Project Scheduling Problem, Oper. Res., 2007, vol. 55, pp. 457–469.CrossRefMATHGoogle Scholar
  24. 24.
    Valls, V., Ballestin, F., and Quintanilla, S, A Hybrid Genetic Algorithm for the Resource-Consrtained Project Scheduling Problem, Eur. J. Oper. Res., 2008, vol. 185, no. 2, pp. 495–508.CrossRefMATHGoogle Scholar
  25. 25.
    Goncalves, J., Resende, M.G.C, and Mendes, J, A Biased Random Key Genetic Algorithm with Forward- Backward Improvement for Resource-Constrained Project Scheduling Problem, J. Heuristics, 2011, vol. 17, pp. 467–486.CrossRefGoogle Scholar
  26. 26.
    Agarwal, A., Colak, S., and Erenguc, S, A Neurogenetic Approach for the Resource-Constrained Project Scheduling Problem, Comput. Oper. Res., 2011, vol. 38, pp. 44–50.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Proon, S. and Jin, M, A Genetic Algorithm with Neighborhood Search for the Resource-Consrtained Project Scheduling Problem, Naval Res. Logist., 2011, vol. 58, pp. 73–82.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kolisch, R. and Sprecher, A., PSPLIB-a Project Scheduling Problem Library, Eur. J. Oper. Res., 1997, vol. 96, pp. 205–216 (downloadable from http://www.om-db.wi.tum.de/psplib/).Google Scholar
  29. 29.
    Kolisch, R, Serial and Parallel Resource-Constrained Project Scheduling Methods Revisited: Theory and Computation, Eur. J. Oper. Res., 1996, vol. 90, no. 2, pp. 320–333.MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kochetov, Yu.A. and Stolyar, A.A, Using Alternating Neighborhoods for Approximate Solution of the Resource-Constrained Project Scheduling Problem, Diskret. Anal. Issled. Oper., Ser. 2, 2003, vol. 10, no. 2, pp. 29–55.MATHGoogle Scholar
  31. 31.
    Mobini, M.D.M., Rabbani, M., Amalnik, M.S., et al., Using an Enhanced Scatter Search Algorithm for a Resource-Constrained Project Scheduling Problem, Soft Computing, 2009, vol. 13, pp. 597–610.CrossRefGoogle Scholar
  32. 32.
    Wang Chen, Yan-jun Shi, Hong-fei Teng, et al., An Efficient Hybrid Algorithm for Resource-Constrained Project Scheduling, Inf. Sci., 2010, vol. 180, no. 6, pp. 1031–1039.CrossRefGoogle Scholar
  33. 33.
    Mendes, J.J.M., Goncalves, J.F., and Resende, M.G.C, A Random Key Based Genetic Algorithm for the Resource Constrained Project Scheduling Problem, Comput. Oper. Res., 2009, vol. 36, pp. 92–109.MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Debels, D., De Reyck Leus, B.R., and Vanhoucke, M, A Hybrid Scatter Search Electromagnetism Meta-Heuristic for Project Scheduling, Eur. J. Oper. Res., 2006, vol. 169, pp. 638–653.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Valls, V., Ballestin, F., and Quintanilla, M.S, Justification and RCPSP: A Technique That Pays, Eur. J. Oper. Res., 2005, vol. 165, pp. 375–386.CrossRefMATHGoogle Scholar
  36. 36.
    Goncharov, E.N, Stochastic Greedy Algorithm for the Resource-Constrained Project Scheduling Problem, Diskret. Anal. Issled. Oper., 2014, vol. 21, no. 3, pp. 10–23.MathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Sobolev Institute of Mathematics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations