Automation and Remote Control

, Volume 78, Issue 6, pp 1072–1086 | Cite as

Spline smoothing for experimental data under zero median of the noise

  • P. I. Balk
  • A. S. Dolgal’
Intellectual Control Systems, Data Analysis


We propose an algorithm for computing parameter estimates for a smoothing cubic spline that minimize the estimated expectation of losses. Instead of the usual assumption that the noise is centered we use an assumption which is more realistic for many practical smoothing problems, namely that it is zero median. The problem setting is augmented by prior deterministic information in the form of constraints on linear combinations of parameters of spline functions. We obtain explicit representations of such estimates and give their qualitative interpretation. Based on the results of a numerical experiment, we establish a high degree of robustness of the solutions to the presence of outliers in the measurements, including same sign outliers, and the possibility to fairly reliably determine the actual accuracy of the resulting estimates of spline parameters by the attained minimum risk value.


smoothing cubic spline noise median risk minimization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huber, P.J., Robust Statistics, New York: Wiley, 1981. Translated under the title Robastnost’ v statistike, Moscow: Mir, 1984.MATHGoogle Scholar
  2. 2.
    Terikhova, N.I, Cubic Smoothing Splines, Mat. Modelir., 1990, vol. 2, no. 8, pp. 112–118.MathSciNetMATHGoogle Scholar
  3. 3.
    Granichin, O.N. and Polyak, B.T., Randomizirovannye algoritmy otsenivaniya i optimizatsii pri pochti proizvol’nykh pomekhakh (Randomized Estimation and Optimization Algorithms for Almost Arbitrary Noise), Moscow: Nauka, 2003.Google Scholar
  4. 4.
    Weyer Erik, Ko Sangho, and Campi, M.C, Proc. 48th Conf. on Decision and Control, Shanghai, China, 2009, pp. 92–98.Google Scholar
  5. 5.
    Balk, P.I, Estimation of Functional Dependency Parameters at Zero Median Value of Noises in Measurements, Autom. Remote Control, 2011, vol. 72, no. 5, pp. 964–974.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Vapnik, V.N., Vosstanovlenie zavisimostei po empiricheskim dannym (Reconstructing Dependencies by Empirical Data), Moscow: Nauka, 1979.MATHGoogle Scholar
  7. 7.
    Orlik, P. and Terao, H., Arrangements of Hyperplanes, Berlin–Heidelberg; Springer-Verlag, 1992.CrossRefMATHGoogle Scholar
  8. 8.
    Shpakov, P.S. and Popov, V.N., Statisticheskaya obrabotka eksperimental’nykh dannykh (Statistical Processing of Experimental Data), Moscow: MGTU, 2003.Google Scholar
  9. 9.
    Ahlberg, J.H., Nilson, E.N., andWalsh, J.L., The Theory of Splines and Their Applications, Mathematics in Science and Engineering, vol. 38, New York–London: Academic, 1967. Translated under the title Teoriya splainov i ee prilozheniya, Moscow: Mir, 1972.Google Scholar
  10. 10.
    Stechkin, S.B. and Subbotin, Yu.N., Splainy v vychislitel’noi matematike (Splines in Computational Mathematics), Moscow: Nauka, 1976.Google Scholar
  11. 11.
    Zav’yalov, Yu.S., Kvasov, B.I., and Miroshnichenko, V.L., Metody splain-funktsii (Methods of Spline Functions), Moscow: Nauka, 1980.MATHGoogle Scholar
  12. 12.
    de Boor, C., A Practical Guide to Splines, New York: Springer, 1978. Translated under the title Prakticheskoe rukovodstvo po splainam, Moscow: Radio i Svyaz’, 1985.MATHGoogle Scholar
  13. 13.
    Voskoboinikov, Yu.E, Frequentist Approach to Estimating the Accuracy of Smoothing and Differentiation of Experimental Data with Smoothing Splines, Avtometriya, 1986, no. 1, pp. 38–47.Google Scholar
  14. 14.
    Malozemov, V.N. and Pevnyi, A.B., Polinomial’nye splainy (Polynomial Splines), Leningrad: ATU, 1986.Google Scholar
  15. 15.
    Volkov, V.G. and Nikulin, M.S., Nesmeshchennye otsenki i ikh primenenie (Unbiased Estimates and Their Application), Moscow: Nauka, 1989.Google Scholar
  16. 16.
    Kirushev, V.A. and Malozemov, V.N, Interpolation of Positive Data with Nonnegative Natural Cubic Splines, Vestn. S.-Peterb. Univ., Ser. 1, 1995, no. 2, pp. 25–30.MATHGoogle Scholar
  17. 17.
    Voskoboinikov, Yu.E, Constructing Smoothing Cubic Splines in Automated Processing of Experimental Results, Avtometriya, 1979, no. 4, pp. 110–117.Google Scholar
  18. 18.
    Mikhal’skii, A.I, The Method of Averaged Splines in the Problem of Approximating Dependences on the Basis of Empirical Data, Autom. Remote Control, 1974, vol. 35, no. 3, part 1, pp. 382–386.Google Scholar
  19. 19.
    Tikhonov, A.N. and Arsenin, V.Ya., Metody reshenii nekorrektnykh zadach (Methods for Solving Ill- Posed Problems), Moscow: Nauka, 1979.MATHGoogle Scholar
  20. 20.
    Chernous’ko, F.L, Optimal Guaranteed Estimates of Uncertainties with Ellipsoids. I, Izv. Akad. Nauk SSSR, Tekhn. Kibern., 1980, no. 3, pp. 3–11.Google Scholar
  21. 21.
    Kurzhanskii, A.B, The Identification Problem—Theory of Guaranteed Estimates, Autom. Remote Control, 1991, vol. 52, no. 4, part 1, pp. 447–465.MathSciNetGoogle Scholar
  22. 22.
    Anskombe, F.J, Graphs in Statistical Analysis, Am. Statistician, 1973, no. 27, pp. 17–21.Google Scholar
  23. 23.
    Raifa, G., Analiz reshenii (Analysis of Solutions), Moscow: Nauka, 1977.Google Scholar
  24. 24.
    Vapnik, V.N. and Chervonenkis, A.Ya., Teoriya raspoznavaniya obrazov (Image Recognition Theory), Moscow: Nauka, 1974.MATHGoogle Scholar
  25. 25.
    Mudrov, V.I. and Kushko, V.L., Metod naimen’shikh modulei (Method of Least Absolute Values), Moscow: Znanie,1971.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Applied GeodesicsBerlinGermany
  2. 2.Mining Institute of the Ural Branch of the Russian Academy of SciencesPermRussia

Personalised recommendations