Advertisement

Automation and Remote Control

, Volume 78, Issue 6, pp 1059–1071 | Cite as

Game-theoretic regulations for control mechanisms of sustainable development for shallow water ecosystems

  • A. I. Sukhinov
  • A. E. Chistyakov
  • G. A. Ugol’nitskii
  • A. B. Usov
  • A. V. Nikitina
  • M. V. Puchkin
  • I. S. Semenov
Control in Social Economic Systems
  • 30 Downloads

Abstract

We study dynamical game-theoretic models of two-level control systems accounting for the conditions of sustainable development. As the hierarchical control mechanisms we consider compulsion and impulsion methods. We give definitions of equilibria and show algorithms for constructing them with simulation modeling for various information regulations. We show a comparative analysis of the efficiency of the proposed control mechanisms for the model of an ecosystem of a shallow body of water (with the example of the Azov sea).

Keywords

sustainable development compulsion impulsion simulation Stackelberg equilibrium Germeier games 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ugol’nitskii, G.A, A Game-Theoretic Study of Certain Methods of Hierarchical Control, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2002, no. 1, pp. 97–101.Google Scholar
  2. 2.
    Ugol’nitskii, G.A., Game-Theoretic Optimality Principles for Hierarchical Control over Sustainable Development, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2005, no. 4, pp. 72–78.MATHGoogle Scholar
  3. 3.
    Ugol’nitskii, G.A., Upravlenie ustoichivym razvitiem aktivnykh sistem (Control over Sustainable Development of Active Systems), Rostov-on-Don: Yuzhn. Federal’nyi Univ., 2016.Google Scholar
  4. 4.
    Ougolnitsky, G, Game Theoretic Formalization of the Concept of Sustainable Development in the Hierarchical Control Systems, Ann. Oper. Res., 2014, vol. 220 (1), pp. 69–86.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Kornienko, S.A. and Ougolnitsky, G.A, Dynamic Stackelberg Games with Requirements to the Controlled System as a Model of Sustainable Environmental Management, Adv. Syst. Sci. Appl., 2014, vol. 14 (4), pp. 325–345.Google Scholar
  6. 6.
    Kononenko, A.F, On Multi-Stage Conflicts with Information Exchange, Zh. Vychisl. Mat. Mat. Fiz., 1977, no. 4, pp. 922–931.MATHGoogle Scholar
  7. 7.
    Gorelik, V.A., Gorelov, M.A., and Kononenko. A.F., Analiz konfliktnykh situatsii v sistemakh upravleniya (Analysis of Conflict Situations in Control Systems), Moscow: Radio i Svyaz’, 1991.MATHGoogle Scholar
  8. 8.
    Ugol’nitskii, G.A. and Usov, A.B, Dynamic Hierarchical Games with Two Players in Program Strategies and Their Applications, Mat. Teor. Igr Prilozh., 2013, vol. 5, no. 2, pp. 82–104.MATHGoogle Scholar
  9. 9.
    Ugol’nitskii, G.A. and Usov, A.B, A Study of Differential Models for Hierarchical Control Systems via Their Discretization, Autom. Remote Control, 2013, vol. 74, no. 2, pp. 252–263.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ugol’nitskii, G.A. and Usov, A.B, Equilibria in Models of Hierarchically Organized Dynamical Control Systems with Regard to Sustainable Development Conditions, Autom. Remote Control, 2014, vol. 75, no. 6, pp. 1055–1068.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Sukhinov, A.I., Nikitina, A.V., and Chistyakov, A.E, Modeling the Scenario of Biological Rehabilitation of Azov Sea, Mat. Modelir., 2012, vol. 24, no. 9, pp. 3–21.MATHGoogle Scholar
  12. 12.
    Sukhinov, A.I., Chistyakov, A.E., and Alekseenko, E.V, A Numerical Implementation of the Three-Dimensional Hydrodynamical Model for Shallow Reservoirs with a Supercomputer, Mat. Modelir., 2011, vol. 23, no. 3, pp. 3–21.MATHGoogle Scholar
  13. 13.
    Sukhinov, A.I. and Chistyakov, A.E, Adapting a Modified Alternating Triangle Iterative Method for Solving Grid Equations with Non-Self-Adjoint Operator, Mat. Modelir., 2012, vol. 24, no. 1, pp. 3–20.MATHGoogle Scholar
  14. 14.
    Nikitina, A.V. and Semenov, I.S, A Numerical Implementation of Methods for Solving Biological Kinetics Problems in the Azov Sea, Izv. YuFU, Tekh. Nauki, 2014, no. 1, pp. 138–143.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. I. Sukhinov
    • 1
  • A. E. Chistyakov
    • 1
  • G. A. Ugol’nitskii
    • 2
  • A. B. Usov
    • 2
  • A. V. Nikitina
    • 2
  • M. V. Puchkin
    • 2
  • I. S. Semenov
    • 2
  1. 1.Don State Technical UniversityRostov-on-DonRussia
  2. 2.South Federal UniversityRostov-on-DonRussia

Personalised recommendations