Advertisement

Automation and Remote Control

, Volume 78, Issue 6, pp 1046–1058 | Cite as

Robust control for one class of multivariable dynamic plants

Robust, Adaptive, and Network Control

Abstract

Consideration was given to construction of a nonlinear robust control law for a multivariable dynamic plant distinguished for control nonlinear mathematical model, the socalled nonaffinity. The design of the robust law for the nonaffine control plant operating in the environment of external and parametric perturbations relies on the hyperstability criterion and the conditions for L-dissipativity, as well as on using in the main loop an explicit two-output reference model and fast correcting filter.

Keywords

decentralized control control-nonaffine plant robust controller priori uncertainty hyperstability criterion L-dissipativity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fradkov, A.L. and Grigor’ev, G.K, Decentralized Adaptive Control of Synchronization of Dynamic System Networks at Bounded Disturbances, Autom. Remote Control, 2013, vol. 74, no. 5, pp. 829–844.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Fradkov, A.L, Control of Synchronization in the Network Dynamic Systems, Vestn. Nizhegorodskogo Univ. im. N.I. Lobachevskogo, 2011, no. 4 (5), pp. 2548–2550.Google Scholar
  3. 3.
    Lee, C.H., Chien, J.C., Chang, H.H., et al., Direct Adaptive Backstepping Control for a Class of MIMO Non-affine Systems Using Recurrent Neural Networks, in Proc. Int. MultiConf. of Engineers and Computer Scientists, IMECS 2009, Hong Kong, March 18–20, 2009, vol. I.Google Scholar
  4. 4.
    Ghasemi, R., Menhaj, M.B., and Afshar, A, A New Decentralized Fuzzy Model Reference Adaptive Controller for a Class of Large-scale Nonaffine Nonlinear Systems, Eur. J. Control, 2009, no. 5, pp. 534–544.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ghasemi, R, Adaptive State Tracking Controller for Multi-Input Multi-Output Non-affine Nonlinear Systems, Int. J. Comput. Electr. Eng., 2010, vol. 3, no. 3, pp. 426–431.Google Scholar
  6. 6.
    Wang, H., Zhou, Q., Yang, X., et al., Robust Decentralized Adaptive Neural Control for a Class of Nonaffine Nonlinear Large-Scale Systems with Unknown Dead Zones, Math. Probl. Eng., 2014, vol. 2014, Article ID 841306.Google Scholar
  7. 7.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi ob”ektami (Nonlinear and Adaptive Control of Complex Dynamic Plants), St. Petersburg: Nauka, 2000.MATHGoogle Scholar
  8. 8.
    Khalil, H.K., Nonlinear Systems, New Jersey: Prentice Hall,2002, 3rd ed.MATHGoogle Scholar
  9. 9.
    Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.Google Scholar
  10. 10.
    Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove matrichnykh neravenstv (Design of the Control Laws on the Basis of Matrix Inequalities), Moscow: Nauka, 2007.MATHGoogle Scholar
  11. 11.
    Cho, D., Kato, Y., and Spilman, D, Sliding Mode and Classical Controllers in Magnetic Levitation Systems, IEEE Control Syst. Mag., 1993, vol. 13, pp. 42–48.CrossRefGoogle Scholar
  12. 12.
    Pshikhopov, V.Kh. and Medvedev, M.Yu., Design of Control Systems of Underwater Vehicles with Nonlinear Characteristics of Actuators, Izv. YuFU, Tekh. Sci., 2011, no. 3 (116), pp. 147–156.Google Scholar
  13. 13.
    Pashilkar, A.A., Sundararajan, N., and Saratchandran, P, Adaptive Backstepping Neural Controller for Reconfigurable Flight Control Systems, IEEE Trans. Control Syst. Technol., 2006, vol. 14, no. 3, pp. 553–561.CrossRefGoogle Scholar
  14. 14.
    Unnikrishnan, N. and Balakrishnan, S.N, Neuroadaptive Model Following Controller Design for a Nonaffine UAV Model, Proc. Am. Control Conf., 2006, pp. 2951–2956.Google Scholar
  15. 15.
    Shiriaev, A.S. and Fradkov, A.L, Stabilization of Invariant Sets for Nonlinear Non-Affine Systems, Automatica, 2000, vol. 36, pp. 1709–1715.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Young, A, Chengyu Cao, Hovakimyan, N., et al., Control of a Nonaffine Double-Pendulum System via Dynamic Inversion and Time-Sscale Separation, in Proc. Am. Control Conf., 2006, pp. 1820–1825.Google Scholar
  17. 17.
    Zhao, T, Adaptive Control for a Class of Non-affine Nonlinear Systems via Neural Networks, in Adaptive Control, Kwanho You, Ed., Shanghai: InTech, 2009, pp. 338–372.Google Scholar
  18. 18.
    Hovakimyan, N., Lavretsky, E., and, Cao C., Dynamic Inversion of Multi-Input Nonaffine Systems via Time-scale Separation, in Proc. Am. Control Conf., 2006, pp. 3594–3599.Google Scholar
  19. 19.
    Lavretsky, E. and Hovakimyan, N, Adaptive Dynamic Inversion for Nonaffine-in-Control Systems via Time-scale Separation: Part II, in Proc. Am. Control Conf., 2005, pp. 3548–3553.Google Scholar
  20. 20.
    Boukezzoula, R., Galichet, S., and Foulloy, L, Fuzzy Adaptive Control for Non-affine Systems, in Proc. IEEE Int. Conf. Fuzzy Syst., 2003, pp. 543–548.Google Scholar
  21. 21.
    Labiod, S. and Guerra, T.M, Adaptive Fuzzy Control of a Class of SISO Nonaffine Nonlinear Systems, Fuzzy Sets Syst., 2007, vol. 158 (10), pp. 1126–1137.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yurkevich, V.D. and Hwang, K.J, Output Regulation of Uncertain Nonaffine in Control Systems via Singular Perturbation Technique, in Proc. 17th IFAC World Congr., Korea, Seoul, 2008, pp. 13133–13138.Google Scholar
  23. 23.
    Kolegov, M.A. and Yurkevich, V.D, Calculation of the Parameters of PI-controllers for Control Nonaffine System, Sb. Nauchn. Tr., 2011, no. 2 (64), pp. 13–18.Google Scholar
  24. 24.
    Yurkevich, V.D, Design of Stabilization Systems for Control Nonaffine Nonlinear Dynamic Plant by Generating Heterotemp Processes, in Proc. XII All-Russian Conf. on Control Problems (electronic resource), Moscow, 2014, pp. 353–363 (CD-ROM).Google Scholar
  25. 25.
    Eremin, E.L, Robust Control for One Class of Nonaffine Nonlinear SISO Systems, Informatika Sist. Upravlen., 2015, no. 3 (45), pp. 89–100.Google Scholar
  26. 26.
    Eremin, E.L., L-dissipativity of Hyperstable Control System under Structural Perturbation. I, Informatika Sist. Upravlen., 2006, no. 2 (12), pp. 94–101.Google Scholar
  27. 27.
    Eremin, E.L., L-dissipativity of Hyperstable Control System under Structural Perturbation. II, Informatika Sist. Upravlen., 2007, no. 1 (13), pp. 130–139.Google Scholar
  28. 28.
    Eremin, E.L., L-dissipativity of Hyperstable Control System under Structural Perturbation. III, Informatika Sist. Upravlen., 2007, no. 2 (14), pp. 153–164.Google Scholar
  29. 29.
    Eremin, E.L., L-dissipativity of Hyperstable Control System under Structural Perturbation. IV, Informatika Sist. Upravlen., 2013, no. 2 (36), pp. 100–106.Google Scholar
  30. 30.
    Eremin, E.L., Kvan, N.V., and Semichevskaya, N.P, Robust Control of Nonlinear Plants with Full-order Observer and Fast Reference Model, Mekhatronika, Avtomatiz., Upravl., 2010, no. 5, pp. 2–6.Google Scholar
  31. 31.
    Eremin, E.L. and Chepak, L.V, Robust Control of Nonlinear System with Correcting Filter, Informatika Sist. Upravlen., 2014, no. 1 (39), pp. 118–126.Google Scholar
  32. 32.
    Eremin, E.L. and Chepak, L.V, Robust Control of Affine System with Correcting Filter, in Proc. XII All-Russian Conf. on Control Probl. (electronic resource), Moscow, 2014, pp. 950–959 (CD-ROM).Google Scholar
  33. 33.
    Eremin, E.L. and Chepak, L.V, Robust Control System of Affine Plant in Circuit with Two Reference Models, Informatika Sist. Upravlen., 2014, no. 3 (41), pp. 121–129.Google Scholar
  34. 34.
    Eremin, E.L., Chepak, L.V., and Shelenok, E.A, Combined Adaptive Control System for Nonlinear Periodic Action Plant, in Proc. 2015 Int. Siberian Conf. Control and Communications (SIBCON), Omsk, 2015.Google Scholar
  35. 35.
    Eremin, E.L., Chepak, L.V., and Shelenok, E.A, Robust Control of Multi-connected Nonlinear System, in Proc. 2015 Int. Siberian Conf. Control and Communications (SIBCON), Omsk, 2015.Google Scholar
  36. 36.
    Eremin, E.L. and Shelenok, E.A, Adaptive Periodic Control System of Nonlinear Plant with varying Modes of Operation, in System Identification and Control Problems (SICPRO’15), Proc. X Int. Conf., Moscow, 2015, pp. 539–547.Google Scholar
  37. 37.
    Eremin, E.L. and Shelenok, E.A, Composite Adaptive Control System of Structurally Parametrically Uncertain Nonlinear Periodic Plant, Informatika Sist. Upravlen., 2015, no. 2 (44), pp. 99–109.Google Scholar
  38. 38.
    Eremin, E.L. and Shelenok, E.A, Adaptive Periodic Servo-System for Nonlinear Control-Affine Objects, Optoelectron., Instrum. Data Process., 2015, no. 51 (5), pp. 523–529.CrossRefGoogle Scholar
  39. 39.
    Telichenko, D.A, Hybrid Adaptive System with Reference Feedforward Control in Curcuits of Decentralized Control with Delay, Informatika Sist. Upravlen., 2006, no. 1 (11), pp. 212–223.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Amur State UniversityBlagoveshchenskRussia
  2. 2.Pacific State UniversityKhabarovskRussia

Personalised recommendations