Skip to main content
Log in

The pursuit-evasion game on the 1-skeleton graph of a regular polyhedron. I

  • Mathematical Game Theory and Applications
  • Selected Articles from Matematicheskaya Teoriya Igr i Ee Prilozheniya
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider a game between a group of n pursuers and one evader moving with the same maximum velocity along the 1-skeleton graph of a regular polyhedron. The goal of the paper is finding, for each regular polyhedron M, a number N(M) with the following properties: if nN(M), the group of pursuers wins, while if n < N(M), the evader wins. Part I of the paper is devoted to the case of polyhedra in ℝ3; Part II will be devoted to the case of ℝd, d ≥ 5; and Part III, to the case of ℝ4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azamov, A.A., Osnovaniya teorii diskretnykh igr (Fundamentals of Theory of Discrete Games), Tashkent: Niso Poligraf, 2011.

    Google Scholar 

  2. Azamov, A., Lower Bound for the Advantage Coefficient in Search Problem on Graphs, Differ. Equat., 2008, vol. 44, no. 12, pp. 1764–1767.

    Article  MathSciNet  MATH  Google Scholar 

  3. Diestel, R., Graph Theory, New York: Springer-Verlag, 2000.

    MATH  Google Scholar 

  4. Krasovskii, N.N., Upravlenie dinamicheskoi sistemoi (Control of a Dynamic System), Moscow: Nauka, 1985.

    Google Scholar 

  5. Petrosyan, L.A. and Zenkevich, N.A., Optimal’nyi poisk v usloviyakh konflikta (Optimal Search in Conflict Conditions), Leningrad: Leningr. Gos. Univ., 1987.

    MATH  Google Scholar 

  6. Pontryagin, L.S., Izbrannye nauchnye trudy (Selected Scientific Papers), Moscow: Nauka, 1988, vol. 2.

    MATH  Google Scholar 

  7. Pshenichnyi, B.N., Structure of Differential Games, Dokl. Akad. Nauk SSSR, 1969, vol. 184, no. 2, pp. 285–287.

    MathSciNet  Google Scholar 

  8. Subbotin, A.I. and Chentsov, A.G., Optimizatsiya garantii v zadachakh upravleniya (Optimization of Guarantee in Control Problems), Moscow: Nauka, 1981.

    MATH  Google Scholar 

  9. Aigner, M. and Fromme, M., A Game of Cops and Robbers, Discr. Appl. Math., 1984, no. 8, pp. 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  10. Andreae, T., Note on a Pursuit Game Played on Graphs, Discr. Appl. Math., 1984, no. 9, pp. 111–115.

    Article  MathSciNet  MATH  Google Scholar 

  11. Elliot, P.J. and Kalton, N.J., The Existence of Value in Games, Memoirs of the AMS, 1972, no. 126, Paris.

    Google Scholar 

  12. Fleming, W.H., The Convergence Problem for Differential Games, J. Math. Anal. Appl., 1961, vol. 3, no. 3, pp. 102–116.

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, F.V., Golovach, P.A., and Petrov, N.N., Search Problems on 1-Skeletons of Regular Polyhedrons, Int. J. Math. Game Theory Algebra, 1988, no. 7, pp. 101–111.

    MathSciNet  MATH  Google Scholar 

  14. Fomin, F.V. and Thilikos, D.M., An Annotated Bibliography on Guaranteed Graph Searching, Theor. Comput. Sci., 2008, vol. 399, pp. 236–245.

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedman, A., Differential Games, New York: Wiley, 1971.

    MATH  Google Scholar 

  16. Isaacs, R., Differential Games, New York: Wiley, 1971.

    MATH  Google Scholar 

  17. Nowakowski, R. and Winkler, P., Vertex-to-vertex Pursuit in a Graph, Discrete Math., 1983, no. 43, pp. 235–239.

    Article  MathSciNet  MATH  Google Scholar 

  18. Petrosjan, L.A., Differential Games of Pursuit, Singapore: World Scientific, 1993.

    Book  Google Scholar 

  19. Quilliot, A., Some Results about Pursuit Games on Metric Spaces Obtained through Graph Theory Techniques, Eur. J. Combin., 1986, no. 7, pp. 55–66.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Azamov.

Additional information

Original Russian Text © A.A. Azamov, A.Sh. Kuchkarov, A.G. Holboyev, 2015, published in Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2015, No. 3, pp. 3–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azamov, A.A., Kuchkarov, A.S. & Holboyev, A.G. The pursuit-evasion game on the 1-skeleton graph of a regular polyhedron. I. Autom Remote Control 78, 754–761 (2017). https://doi.org/10.1134/S0005117917040166

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917040166

Navigation