Skip to main content
Log in

Hierarchical robust systems for magnetic plasma control in tokamaks with adaptation

  • Computer-Aided Information Control Systems, Process Control Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We consider synthesis and modeling of hierarchical robust magnetic control systems for plasma in tokamaks with adaptation of the magnetic axis’ vertical position. The studies were done for ITER (Cadarache, France) and Globus-M (St. Petersburg, Russia) tokamaks. Our original synthesis method ensures an improvement in performance for the shape of the plasma by resolving the contradiction between position and plasma shape via adaptation in a hierarchical system. Numerical modeling of synthesized control systems on multivariable linear models of plasma and nonlinear plasma-physics code DINA that unites basic equations of plasma dynamics in a magnetic field has shown the efficiency of the proposed approach and a possibility to apply it in a physical experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh. Tekhnika lineinykh matrichnykh neravenstv (Control over Linear Systems under External Disturbances. The Approach of Linear Matrix Inequalities), Moscow: LENAND, 2014.

    Google Scholar 

  2. Green, M. and Limebeer, D.J.N., Linear Robust Control, Englewood Cliffs: Prentice Hall, 1995.

    MATH  Google Scholar 

  3. Mackenroth, U., Robust Control Systems. Theory and Case Studies, New York: Springer, 2004.

    Book  MATH  Google Scholar 

  4. Tsykunov, A.M., Adaptivnoe i robastnoe upravlenie dinamicheskimi ob”ektami po vykhodu (Adaptive and Robust Output Control for Dynamical Objects), Moscow: Fizmatlit, 2009.

    Google Scholar 

  5. Tsypkin, Ya.Z., Adaptatsiya i obuchenie v avtomaticheskikh sistemakh (Adaptation and Learning in Automatic Systems), Moscow: Nauka, 1968.

    MATH  Google Scholar 

  6. Astolfi, A., Nonlinear and Adaptive Control. Tools and Algorithms for the User, London: Imperial College Press, 2006.

    MATH  Google Scholar 

  7. Astrom, K.J. and Wittenmark, B., Adaptive Control, Reading: Addison-Wesley, 1989.

    Google Scholar 

  8. Vasil’ev, V.I., Gusev, Yu.M., Efanov, V.N., et al., Mnogourovnevoe upravlenie dinamicheskimi ob”ektami (Multilevel Control of Dynamical Plants), Moscow: Nauka, 1987.

    Google Scholar 

  9. Mesarovic, M.D., Mako, D., and Takahara, Y., Theory of Hierarchical Multilevel Systems, New York: Academic, 1970. Translated under the title Teoriya ierarkhicheskikh mnogourovnevykh sistem, Moscow: Mir, 1973.

    Google Scholar 

  10. Mitrishkin, Yu.V., Intelligent Hierarchical Control Systems for Complex Dynamical Plants, Proc. IX Intl. Symp. “Intelligent Systems” INTELS’2010, Vladimir Gos. Univ., June 28–July 2, 2010, pp. 17–33.

    Google Scholar 

  11. Mitrishkin, Y.V. and Guerra, R.H., Intelligent Hierarchical Control System for Complex Processes. Three Levels Control System, Proc. 6th Int. Conf. on Informatics in Control, Automation and Robotics, 2009.

    Google Scholar 

  12. Cannon, W., The Wisdom of the Body, New York: Norton, 1932.

    Google Scholar 

  13. Kalman, R.E., Falb, P.L., and Arbib, M.A., Topics in Mathematical System Theory, New York: McGraw-Hill, 1969. Translated under the title Ocherki po matematicheskoi teorii sistem, Moscow: Mir, 1971.

    MATH  Google Scholar 

  14. Wesson, J., Tokamaks, Oxford: Clarendon, 1997.

    MATH  Google Scholar 

  15. Bittencourt, J.A., Fundamentals of Plasma Physics, New York: Springer, 2004. Translated under the title Osnovy fiziki plasmy, Moscow: Fizmatlit, 2009.

    MATH  Google Scholar 

  16. Lukash, V.E., Dokuka, V.N., and Khairutdinov, R.R., The DINA Software Suite in the MATLAB System for Solving Plasma Control Problems in a Tokamak, Vopr. At. Nauki Tekh., Ser. Thermoyad. Sintez, 2004, no. 1, pp. 40–49.

    Google Scholar 

  17. Miyamoto, K., Plasma Physics and Controlled Nuclear Fusion, New York: Springer, 2005. Translated under the title Osnovy fiziki plazmy i upravlyaemogo sinteza, Moscow: Fizmatlit, 2007.

    MATH  Google Scholar 

  18. Khayrutdinov, R.R. and Lukash, V.E., Studies of Plasma Equilibrium and Transport in a Tokamak Fusion Device with the Inverse-Variable Technique, J. Comp. Physics, 1993, vol. 109, pp. 193–201.

    Article  MATH  Google Scholar 

  19. Mitrishkin, Y.V. and Kartsev, N.M., Hierarchical Plasma Shape, Position, and Current Control System for ITER, Proc. 50th IEEE Conf. on Decision and Control, Orlando, USA, 2011, pp. 2620–2625.

    Chapter  Google Scholar 

  20. Shafranov, V.D., Plasma Equilibrium in a Magnetic Field, Vopr. Teorii Plazmy, 1963, no. 2, pp. 92–131.

    MATH  Google Scholar 

  21. Dokuka, V.N., Kadurin, A.V., Mitrishkin, Yu.V., et al., Synthesis and Modeling of the H8-System of Magnetic Control of the Plasma in the Tokamak-Reactor, Autom. Remote Control, 2007, vol. 68, no. 8, pp. 1410–1428.

    Article  MATH  Google Scholar 

  22. Mitrishkin, Yu.V., Korostelev, A.Ya., Dokuka, V.N., et al., Synthesis and Modeling of Two-Level Magnetic Control System for a Plasma Tokamak, Fiz. Plazmy, 2011, vol. 37, no. 4, pp. 307–349.

    Google Scholar 

  23. Mitrishkin, Y., Korostelev, A., Kartsev, N., et al., Synthesis and Modeling of Plasma Vertical Speed, Shape, and Current Profile Control Systems in Tokamak, Proc. Int. Workshop “Control for Nuclear Fusion,” Eindhoven Univ. of Technology, Netherlands, 2008.

    Google Scholar 

  24. Mitrishkin, Y.V., Dokuka, V.N., and Khayrutdinov, R.R., Linearization of ITER Plasma Equilibrium Model on DINA Code, Proc. 32nd EPS Plasma Physics Conf., Tarragona, Spain, June 2005, ID P5.080.

    Google Scholar 

  25. The ITER Project Web Site, http://www.iter.org.

  26. Gusev, V., Azizov, E., Alekseev, A., et al., Globus-M Results as the Basis for a Compact Spherical Tokamak with Enhanced Parameters Globus-M2, Nuclear Fusion, 2013, vol. 53, no. 9, 093013.

    Article  Google Scholar 

  27. Korenev, P.S., Mitrishkin, Yu.V., and Patrov, M.I., Reconstructing the Equilibrium Distribution of Parameters for a Plasma Tokamak by External Magnetic Measurements and Constructing Linear Plasma Models, Mekhatronika, Avtomatiz., Upravl., 2016, vol. 17, no. 4, pp. 254–265.

    Article  Google Scholar 

  28. Mitrishkin, Y.V., Korenev, P.S., Kartsev, N.M., et al., Plasma Shape Control with a Linear Model for Globus-M Tokamak, 41st EPS Conf. on Plasma Physics, Berlin, Germany, June 23–27, 2014, P4.054.

    Google Scholar 

  29. Walker, M. and Humphreys, D., Valid Coordinate Systems for Linearized Plasma Shape Response Models in Tokamaks, Fusion Sci. Technol., 2006, vol. 50, no. 4, pp. 473–489.

    Google Scholar 

  30. Walker, M. and Humphreys, D., A Multivariable Analysis of the Plasma Vertical Instability in Tokamaks, Proc. 45th IEEE Conf. on Decision and Control, San Diego, 2006, pp. 2213–2219.

    Chapter  Google Scholar 

  31. Chizhenko, I.M., Spravochnik po preobrazovatel’noi tekhnike (Handbook of Transformation Technics), Kiev: Tekhnika, 1978.

    Google Scholar 

  32. Hamphreys, D.A., Casper, T.A., Eidietis, N., et al., Experimental Vertical Stability Studies for ITER Performance and Design Guidance, Nuclear Fusion, 2009, vol. 49, p. 10.

    Google Scholar 

  33. Mitrishkin, Yu.V. and Kartsev, N.M., Synthesis and Modeling of System Stabilization Dynamics for a Nonstationary Plant, Proc. X Int. Workshop “Stability and Oscillations of Nonlinear Control Systems,” Moscow: Inst. Probl. Upravlen., 2008, pp. 200–201.

    Google Scholar 

  34. Mitrishkin, Yu.V. and Korostelev, A.Ya., A Cascade Tracking System for the Current and Form of Plasma in a Tokamak with Decoupling of Control Channels, Vestn. MGTU Baumana, Ser. Priborostr., 2010, vol. 79, no. 2, pp. 21–38.

    Google Scholar 

  35. McFarlane, D. and Glover, K., Robust Controller Design Using Normalized Coprime Factor Plant Description, Lect. Notes in Control and Information Sciences, Berlin: Springer-Verlag, 1989, no. 138.

    Google Scholar 

  36. Wang, L., Model Predictive Control System Design and Implementation Using MATLAB. Advances of Industrial Control, London: Springer-Verlag, 2009.

    Google Scholar 

  37. Kuznetsov, E.A. and Mitrishkin, Yu.V., Avtokolebatel’naya sistema stabilizatsii neustoichivogo vertikal’nogo polozheniya plazmy sfericheskogo tokamaka “GLOBUS-M” (Autooscillation Stabilization System for a Nonstationary Vertical Plasma Position in a Spherical GLOBUS-M Tokamak), Moscow: Inst. Probl. Upravlen., 2005.

    Google Scholar 

  38. Yuan, Q.P., Xiao, B.J., Luo, Z.P., et al., Plasma Current, Position and Shape Feedback Control on EAST, Nuclear Fusion, 2013, vol. 53, 043009.

    Google Scholar 

  39. Mertens, V., Raupp, G., and Treutterer, W., Chapter 3: Plasma Control in ASDEX Upgrade, in Fusion Sci. Technol., 2003, vol. 44, pp. 593–604.

    Google Scholar 

  40. Bellizio, T., Albanese, R., Ambrosino, G., et al., Control of Elongated Plasma in Presence of ELMs in the JET Tokamak, IEEE Trans. Nuclear Sci., 2011, vol. 58, no. 4, pp. 1497–1502.

    Article  Google Scholar 

  41. Gribov, Y., Kavin, A., Lukash, V., et al., Plasma Vertical Stabilisation in ITER, Nucl. Fusion, 2015, vol. 55, 073021.

    Article  Google Scholar 

  42. Kadurin, A.V. and Mitrishkin, Yu.V., Multivariable System of Cascaded Control of Plasma Shape and Current in Tokamak with Channel Decoupling and H8–controller, Autom. Remote Control, 2011, vol. 72, no. 10, pp. 2053–2070.

    Article  MathSciNet  MATH  Google Scholar 

  43. Mitrishkin, Yu.V., Upravlenie plazmoi v eksperimental’nykh termoyadernykh ustanovkakh. Adaptivnye avtokolebatel’nye i robastnye sistemy upravleniya (Plasma Control in Experimental Thermonuclear Plants. Adaptive Autooscillatory and Robust Control Systems), Moscow: KRASAND, 2016.

    Google Scholar 

  44. Kartsev, N.M. and Mitrishkin, Yu.V., Magnetic Plasma Control System in a Tokamak with Stabilization of Its Vertical Position, Proc. XI Int. Seminar “Stability and Oscillations of Nonlinear Control Systems,” Moscow: Inst. Probl. Upravlen., 2010, pp. 165–166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Kartsev.

Additional information

Original Russian Text © N.M. Kartsev, Yu.V. Mitrishkin, M.I. Patrov, 2017, published in Avtomatika i Telemekhanika, 2017, No. 4, pp. 149–165.

This paper was recommended for publication by N.N. Bakhtadze, a member of the Editorial Board

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartsev, N.M., Mitrishkin, Y.V. & Patrov, M.I. Hierarchical robust systems for magnetic plasma control in tokamaks with adaptation. Autom Remote Control 78, 700–713 (2017). https://doi.org/10.1134/S0005117917040117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117917040117

Keywords

Navigation