Automation and Remote Control

, Volume 78, Issue 1, pp 125–137 | Cite as

Passive location of a group of moving targets with one stationary bearing with prior information

  • Yu. G. BulychevEmail author
  • V. Yu. Bulychev
  • S. S. Ivakina
  • I. G. Nasenkov
Navigation and Control of Moving Systems


For a single stationary bearing, we develop a method for generalized identification of a group of moving emitting targets for which we know a priori the possible endpoints of their routes. The method includes estimating the parameters of polynomial models of motion based on pseudomeasurements, coordinates of the route’s endpoint for every target, and also the time when it reaches that point. We find the applicability conditions for our approach and propose a step by step generalized identification algorithm. We show the results of a numerical experiment.

Key words

passive location polynomial model of motion pseudomeasurements route end-point bearing partially known motion parameters correlation matrix normalized model of motion normalizing factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mel’nikov, Yu.P. and Popov, S.V., Radiotekhnicheskaya razvedka (Radiotechnical Surveillance), Moscow: Radiotekhnika, 2008.Google Scholar
  2. 2.
    Fal’kovich, S.E. and Khomyakov, E.N., Statisticheskaya teoriya izmeritel’nykh radiosistem (Statistical Theory of Measuring Radio Systems), Moscow: Radio i Svyaz’, 1981.Google Scholar
  3. 3.
    Chernyak, V.S., Mnogopozitsionnaya radiolokatsiya (Multipositional Radiolocation), Moscow: Radio i Svyaz’, 1993.Google Scholar
  4. 4.
    Bulychev, Yu.G. and Manin, A.P., Matematicheskie aspekty opredeleniya dvizheniya letatel’nykh apparatov (Mathematical Aspects for Identifying the Motion of Flying Vehicles), Moscow: Mashinostroenie, 2000.Google Scholar
  5. 5.
    Kolessa, A.E., Estimating the Coordinates of a Collection of Objects Observed by a Multipositional System of Direction Finder, Radiotekh. Elektron., 1987, vol. 32, no. 12, pp. 2534–2541.Google Scholar
  6. 6.
    Zhdanyuk, B.F., Osnovy statisticheskoi obrabotki traektornykh izmerenii (Fundamentals of Statistical Processing of Trajectory Measurements), Moscow: Sovetskoe Radio, 1978.Google Scholar
  7. 7.
    Osnovy manevrirovaniya korablei (Fundamentals of Ship Maneuvering), Skvortsov, M., Ed., Moscow: Voenizdat, 1966.Google Scholar
  8. 8.
    Khvosch, V.A., Taktika podvodnykh lodok (Submarine Tactics), Moscow: Voenizdat, 1989.Google Scholar
  9. 9.
    Makukhina, T.P., Milen’kii, A.V., Natal’chenko, O.S., and Popov, S.V., Estimating the Current Coordinates of a Moving Object by Direction Finding Data, Vopr. Radioelektron., Ser. ASUPR, 1992, no. 2, pp. 3–7.Google Scholar
  10. 10.
    Mel’nikov, Yu.P. and Popov, S.V., Methods for Estimating Errors in Identifying Parameters of Moving Objects in Location under Radioelectronic Suppression, Radiotekh., 1998, no. 3, pp. 12–15.Google Scholar
  11. 11.
    Mel’nikov, Yu.P. and Popov, S.V., Finding the Distance for Direction Finding for Object with Partially Known Motion Parameters, Radiotekh., 2003, no. 4, pp. 71–77.Google Scholar
  12. 12.
    Bulychev, Yu.G. and Shukhardin, A.N., Identifying Parameters of Target Trajectory Based on a Single- Channel Moving Direction Finder, Radiotekh., 2004, no. 8, pp. 3–7.Google Scholar
  13. 13.
    Bulychev, Yu.G., Bulychev, V.Yu., Ivakina, S.S., and Nikolas, P.I., Estimating the Sloped Distance to Target with a Polynomial Law of Motion, Vestn. Kazan. Gos. Univ., 2013, no. 1, pp. 67–74.Google Scholar
  14. 14.
    Bulychev, Yu.G., Bulychev, V.Yu., Ivakina, S.S., and Nikolas, P.I., An Identification Model for Direction Finding of a Target with Partially Known Motion Parameters, Radiotekh., 2013, no. 5, pp. 10–15.Google Scholar
  15. 15.
    Bulychev, Yu.G., Bulychev, V.Yu., Ivakina, S.S., and Mozol’, A.A., Estimation of Parameters of Object Motion Based on Stationary Quasi-autonomous Direction Finder, Izv. Ross. Akad. Nuak, Teor. Sist. Upravlen., 2013, no. 5, pp. 92–99.zbMATHGoogle Scholar
  16. 16.
    Lin, X., Kirubarajan, T., Bar-Shalom, Y., and Maskell, S., Comparison of EKF, Pseudomeasurement and Particle Filters for a Bearing-only Target Tracking Problem, Proc. SPIE-Int. Soc. Optic. Eng., 2002, vol. 4728, pp. 240–250.CrossRefGoogle Scholar
  17. 17.
    Miller, B.M., Stepanyan, K.V., Miller, A.B., Andreev, K.V., and Khoroshenkikh, S.N., Optimal Filter Selection for UAV Trajectory Control Problems, Proc. 37 Conference on Inform. Techn. Syst. 2013, Conf. Young Sci. Eng. IITP RAS, 1–6 September 2013, Kaliningrad, Russia, 2013, pp. 327–333.Google Scholar
  18. 18.
    Aidala, V.J. and Nardone, S.C., Biased Estimation Properties of the Pseudolinear Tracking Filter, IEEE Transact. Aerospase Electron. Syst., 1982, vol. 18, no. 4, pp. 432–441.CrossRefGoogle Scholar
  19. 19.
    Amelin, K.S. and Miller, A.B., An Algorithm for Refinement of the Position of a Light UAV on the Basis of Kalman Filtering of Bearing Measurements, Commun. Technol. Electron., 2014, vol. 59, no. 6, pp. 622–631.CrossRefGoogle Scholar
  20. 20.
    Miller, A.B., Developing Algorithms of Object Motion Control on the Basis of Kalman Filtering of Bearing-Only Measurements, Autom. Remote Control, 2015, vol. 76, no. 6, pp. 1018–1035.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Miller, A. and Miller, B., Stochastic Control of Light UAV at Landing with the Aid of Bearing-Only Observations, Proc. SPIE Eight Int. Conf. Machine Vision (ICMV 2015), 2015, vol. 9875, pp. 1–10, doi:10.1117/12.2228544A.Google Scholar
  22. 22.
    Karpenko, S., Konovalenko, I., Miller, A., Miller, B., and Nikolaev, D., UAV Control on the Basis of 3D Landmark Bearing-Only Observations, Sensors [Special Issue], 2015, no. 15(12), pp. 29802–29820, doi:10.3390/s151229768.CrossRefGoogle Scholar
  23. 23.
    Karpenko, S., Konovalenko, I., Miller, A., Miller, B., and Nikolaev, D., Visual Navigation of the UAV on the Basis of 3D Natural Landmarks, Proc. SPIE Eight Int. Conf. Machine Vision (ICMV 2015), 2015, vol. 9875, pp. 1–10, doi:10.111712.2228793.Google Scholar
  24. 24.
    Miller, A. and Miller, B., UAV Control on the Basis of the Bearing-only Observations, Proc. 2014 Austral. Control Conf., Canberra, 17–18 November 2014, pp. 31–36.Google Scholar
  25. 25.
    Miller, A. and Miller, B., Tracking of the UAV Trajectory on the Basis of Bearing-Only Observations, Proc. IEEE CDC, Los-Angeles, 15–17 December, 2014.Google Scholar
  26. 26.
    Bar-Shalom, Ya., Willet, P.K., and Tian, X., Tracking and Data Fusion: A Handbook of Algorithms, Storrs: YBS Press, 2011, ISBN-13: 978-0964831278.Google Scholar
  27. 27.
    Ried, D., An Algorithm for Tracking Multiple Targets, IEEE Transact. Autom. Control, 1979, vol. 24(6), pp. 843–854.CrossRefGoogle Scholar
  28. 28.
    Brandin, V.N. and Razorenov, G.N., Opredelenie traektorii kosmicheskikh apparatov (Finding Trajectories of Space Vehicles), Moscow: Mashinostroenie, 1978.Google Scholar
  29. 29.
    Nardone, S.C. and Aidala, V.J., Observability Criteria for Bearings-Only Target Motion Analysis, IEEE Transact. Aerospac. Electron. Syst., 1981, vol. AES-17, pp. 162–166.Google Scholar
  30. 30.
    Bunday, B., Basic Linear Programming, London: Edward Arnold, 1987. Translated under the title Osnovy lineinogo programmirovaniya, Moscow: Radio i Svyaz’, 1989.Google Scholar
  31. 31.
    Katta, G. and Murty, A., An Algorithm for Ranking All the Assignments in Order of Increasing Cost, Oper. Res., 1968, no. 16(3), pp. 682–687.CrossRefzbMATHGoogle Scholar
  32. 32.
    Bulychev, Yu.G. and Burlai, I.V., A Parametric Identification Method of Control Systems under Inexact Input Data, Avtom. Telemekh., 1997, no. 11, pp. 56–65.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. G. Bulychev
    • 1
    Email author
  • V. Yu. Bulychev
    • 1
  • S. S. Ivakina
    • 1
  • I. G. Nasenkov
    • 2
  1. 1.SC VNII GradientRostov-on-DonRussia
  2. 2.SC “Radioelectronic Technologies Group,”MoscowRussia

Personalised recommendations