Skip to main content
Log in

On stability of solutions for a class of nonlinear difference systems with switching

  • Nonlinear Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

The stability of the trivial solution for a class of difference systems with switching and sector-type nonlinearities is studied. Different approaches to common Lyapunov function design for the family of subsystems corresponding to the considered switched system are proposed. Sufficient conditions making the trivial solution asymptotically stable for any switching law are determined. In the case when common Lyapunov function design fails, multiple Lyapunov functions are used to obtain the restrictions on the switching law guaranteeing the asymptotic stability of the trivial solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shorten, R., Wirth, F., Mason, O., Wulf, K., and King, C., Stability Criteria for Switched and Hybrid Systems, SIAM Rev., 2007, vol. 49, no. 4, pp. 545–592.

    Article  MathSciNet  MATH  Google Scholar 

  2. Decarlo, R.A., Branicky, M.S., Pettersson, S., and Lennartson, B., Perspectives and Results on the Stability and Stabilizability of Hybrid Systems, Proc. IEEE, 2000, vol. 88, no. 7, pp. 1069–1082.

    Article  Google Scholar 

  3. Liberzon, D. and Morse, A.S., Basic Problems in Stability and Design of Switched Systems, IEEE Control Syst. Mag., 1999, vol. 19, no. 15, pp. 59–70.

    Article  Google Scholar 

  4. Vassilyev, S.N., Towards Stability of a Class of Hybrid Systems, Izv. Irkutsk. Gos. Univ., Mat., 2009, vol. 2, no 1, pp. 108–117.

    MathSciNet  Google Scholar 

  5. Vassilyev, S.N. and Kosov A.A., Analysis of Hybrid Systems’ Dynamics Using the Common Lyapunov Functions and Multiple Homomorphisms, Autom. Remote Control, 2011, vol. 72, no. 6, pp. 1163–1183.

    Article  MathSciNet  MATH  Google Scholar 

  6. Podval’ny, S.L. and Ledeneva, T.M., Intelligent Modeling Systems: Design Principles, Autom. Remote Control, 2013, vol. 74, no. 7, pp. 1201–1210.

    Article  MATH  Google Scholar 

  7. Volkova, A.S., Gnilitskaya, Yu.A., and Provotorov, V.V., On the Solvability of Boundary-value Problems for Parabolic and Hyperbolic Equations on Geometrical Graphs, Autom. Remote Control, 2014, vol. 75, no. 2, pp. 405–412.

    Article  MathSciNet  MATH  Google Scholar 

  8. Aleksandrov, A.Yu., Chen, Y., Platonov, A.V., and Zhang, L., Stability Analysis for a Class of Switched Nonlinear Systems, Automatica, 2011, vol. 47, no. 10, pp. 2286–2291.

    Article  MathSciNet  MATH  Google Scholar 

  9. Branicky, M.S., Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems, IEEE Trans. Automat. Control, 1998, vol. 43, no. 4, pp. 475–482.

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhai, G., Hu, B., Yasuda, K., and Michel, A.N., Disturbance Attenuation Properties of Time-controlled Switched Systems, J. Franklin Inst., 2001, vol. 338, no. 7, pp. 765–779.

    Article  MathSciNet  MATH  Google Scholar 

  11. Zubov, V.I., Conservative Numerical Methods for Integrating Differential Equations in Nonlinear Mechanics, Dokl. Math., 1997, vol. 55, no. 3, pp. 388–390.

    MATH  Google Scholar 

  12. Mickens, R.E., Applications of Nonstandard Finite Difference Schemes, Singapore: World Scientific, 2000.

    Book  MATH  Google Scholar 

  13. Aleksandrov, A.Yu. and Zhabko, A.P., On Stability of Solutions for a Class of Nonlinear Difference Systems, Sib. Mat. Zh., 2003, vol. 44, no 6, pp. 1217–1225.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kazkurewicz, E. and Bhaya, A., Matrix Diagonal Stability in Systems and Computation, Boston: Birkhauser, 1999.

    Google Scholar 

  15. Halanay, A. and Wexler, D., Teoria Calitativa a Sistemelor Cu Impulsuri, Bucharest: Romanian Academy of Sciences, 1968. Translated under the title Kachestvennaya teoriya impul’snykh sistem, Moscow: Mir, 1971.

    MATH  Google Scholar 

  16. Vidal, P., Systemes echantilliones non lineaires, Newark: Gordon and Breach, 1968. Translated under the title Nelineinye impul’snye sistemy, Moscow: Energiya, 1974.

    Google Scholar 

  17. Aleksandrov, A.Yu. and Platonov, A.V., On Absolute Stability of one Class of Nonlinear Switched Systems, Autom. Remote Control, 2008, vol. 69, no. 7, pp. 1101–1116.

    Article  MathSciNet  MATH  Google Scholar 

  18. Aleksandrov, A.Yu., Chen, Y., Platonov, A.V., and Zhang, L., Stability Analysis and Uniform Ultimate Boundedness Control Synthesis for a Class of Nonlinear Switched Difference Systems, J. Differ. Equat. Appl., 2012, vol. 18, no. 9, pp. 1545–1561.

    Article  MathSciNet  MATH  Google Scholar 

  19. Kamenetskiy, V.A. and Pyatnitskiy, Ye.S., An Iterative Method of Lyapunov Function Construction for Differential Inclusions, Syst. Control Lett., 1987, vol. 8, no. 5, pp. 445–451.

    Article  MathSciNet  MATH  Google Scholar 

  20. Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.

    Book  MATH  Google Scholar 

  21. Aleksandrov, A.Yu., Kosov, A.A., and Platonov, A.V., On the Asymptotic Stability of Switched Homogeneous Systems, Syst. Control Lett., 2012, vol. 61, no. 1, pp. 127–133.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Aleksandrov.

Additional information

Original Russian Text © A.Yu. Aleksandrov, A.V. Platonov, 2016, published in Avtomatika i Telemekhanika, 2016, No. 5, pp. 37–49.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.Y., Platonov, A.V. On stability of solutions for a class of nonlinear difference systems with switching. Autom Remote Control 77, 779–788 (2016). https://doi.org/10.1134/S0005117916050039

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117916050039

Keywords

Navigation