Automation and Remote Control

, Volume 77, Issue 2, pp 356–367 | Cite as

The cascade multivariable control system of poloidal magnetic fluxes in a tokamak

  • A. A. Prokhorov
  • Yu. V. Mitrishkin
  • M. I. Patrov
  • V. K. Gusev
Control Sciences


This paper presents the model of Globus-M active spherical tokamak without plasma in the vacuum vessel. The tokamak passive structures are taken into account in the model. The authors develop the multivariable control system of poloidal magnetic fluxes in the tokamak vacuum vessel of the external cascade based on the internal current control cascade in the poloidal windings. The numerical simulation results of the control system in Matlab are given.


Remote Control Mutual Inductance Vacuum Vessel Scenario Current Spherical Tokamak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitrishkin, Yu.V., Kartsev, N.M., and Zenkov, S.M., Plasma Vertical Position, Shape, and Current Control in T-15 Tokamak, Proc. of the IFAC Conf. on Manufacturing Modelling, Management and Control, St. Petersburg, June 19–21, 2013, 1820–1825.Google Scholar
  2. 2.
    Zenkov, S.M., Mitrishkin, Yu.V., and Fokina, E.K., Plasma Position, Shape and Current Control Systems in T-15 Tokamak, Probl. Upravlen., 2013, no. 4, pp. 2–10.Google Scholar
  3. 3.
    Lukash, V.E., Dokuka, V.N., and Khairutdinov, R.R., DINA Software System in the MATLAB System for Control of Plasma in Tokamak, Vopr. Atom. Nauki Tekhn., Ser.: Termoyadernyi Sintez, 2004, no. 1, pp. 40–49.Google Scholar
  4. 4.
    Beghi, A. and Cenedese, A., Advances in Real-Time Plasma Boundary Reconstruction, IEEE Control Syst. Magaz., 2005, vol. 25, no. 5, pp. 44–64.CrossRefGoogle Scholar
  5. 5.
    Walker, M.L. and Humphreys, D.A., Valid Coordinate Systems for Linearized Plasma Shape Response Models in Tokamaks, Fusion Sci. Techn., 2006, vol. 50, pp. 473–489.Google Scholar
  6. 6.
    Yuan, Q.P., Xiao, B.J., Luo, Z.P., et al., Plasma Current, Position and Shape Feedback Control on EAST, IOP Publishing and International Atomic Energy Agency, Nuclear Fusion, 2013, vol. 53, 043009.Google Scholar
  7. 7.
    Gusev, V.K., Golant, V.E., Gusakov, E.Z., et al., Globus-M Spherical Tokamak, Techn. Phys., 1999, vol. 44, no. 9, pp. 1054–1057.CrossRefGoogle Scholar
  8. 8.
    Kuznetsov, E.A. and Mitrishkin, Yu.V., Self-oscillating System for Stabilization of Unstable Vertical Position of Plasma of GLOBUS-M Sperical Tokamak, Preprint of Trapeznikov Inst. of Control Sciences, Moscow: Inst. Probl. Upravlen., 2005.Google Scholar
  9. 9.
    Ariola, M. and Pironti, A., Magnetic Control of Tokamak Plasmas, Berlin: Springer, 2008.zbMATHGoogle Scholar
  10. 10.
    Gusev, V.K., Bender, S.E., Dech, A.V., et al., Methods for Reconstructing Equilibrium Plasma Configurations in Globus-M Spherical Tokamak, Techn. Phys., 2006, vol. 51, no. 8, pp. 987–994.CrossRefGoogle Scholar
  11. 11.
    Vasil’ev, V.I., Kostsov, Yu.A., Lobanov, K.M., et al., On-Line Plasma Shape Reconstruction Algorithm in Tokamaks and Its Verification in the Globus-M, Nuclear Fusion, 2006, vol. 46, pp. 625–628.CrossRefGoogle Scholar
  12. 12.
    Kalantarov, P.L. and Tseitlin, L.A., Raschet induktivnostei: spravochnaya kniga (Calculations of Inductances: Reference Book), Leningrad: Energoatomizdat, 1986.Google Scholar
  13. 13.
    Mitrishkin, Yu.V., Korostelev, A.Ya., Dokuka, V.N., and Khairutdinov, R.R., Synthesis and Simulation of a Two-Level Magnetic Control System for Tokamak-Reactor Plasma, Plazma Phys. Reports, 2011, vol. 37, no. 4, pp. 279–320.CrossRefGoogle Scholar
  14. 14.
    Rozanov, Yu.K., Osnovy silovoi elektroniki (Fundamentals of Power Electronics), Moscow: Energoatomizdat, 1992.Google Scholar
  15. 15.
    Matveev, A.N., Elektrichestvo i magnetizm (Electricity and Magnetism), Moscow: Vysshaya Shkola, 1983.Google Scholar
  16. 16.
    Pironti, A. and Walker, M., Fusion, Tokamaks, and Plasma Control, IEEE Control Syst. Magaz., 2005, vol. 25, no. 5, pp. 30–43.CrossRefGoogle Scholar
  17. 17.
    Fletcher, C., Computational Galerkin Methods, New York: Springer-Verlag, 1984. Translated under the title Chislennye metody na osnove metoda Galerkina, Moscow: Mir, 1988.CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Prokhorov
    • 1
  • Yu. V. Mitrishkin
    • 1
  • M. I. Patrov
    • 2
  • V. K. Gusev
    • 2
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations