Advertisement

Automation and Remote Control

, Volume 77, Issue 1, pp 159–178 | Cite as

Using syntactic text analysis to estimate educational tasks’ difficulty and complexity

  • I. S. NaumovEmail author
  • V. S. Vykhovanets
Large Scale Systems Control

Abstract

We suggest a routine for automatic estimation of complexity and difficulty of educational tasks. This routine is based on syntactic text analysis, phrases’ predicative structures identification, and semantic network construction. Then we develop a mathematical model which employs a notion on semantic distance between notions–words to calculate the amount of knowledge in a semantic network. We show that the amount of knowledge in a semantic network is a measure in the set of all semantic networks, and the semantic distance makes this set the metric one.

Keywords

Remote Control Semantic Network Mathematical Linguistics Semantic Distance Simple Sentence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avanesov, B.S., Knowledge as a Studies Course of Pedagogical Measuremnts, Pedagogich. Izmeren., 2005, no. 3, pp. 43–52.Google Scholar
  2. 2.
    Anisimov, A.V., Liman, K.S., and Marchenko, A.A., Methods of Computing Measures of Words Semantic Similarity in a Natural Language, URL: http://lingvoworks.org.ua (Cited April 9, 2013).Google Scholar
  3. 3.
    Borisov, I.K., Optimizatsiya protsessa obucheniya: Obshchedidakticheskii aspekt (Optimization of Education Process. Common Pedagogical Aspect), Moscow: Pedagogika, 1977.Google Scholar
  4. 4.
    Ball, G.A., Teoriya uchebniykh zadach: psikhologo-pedagogicheskii aspekt (Educational Tasks Theory: Psychological-and-Pedagogical Aspect), Moscow: Pedagogika, 1990.Google Scholar
  5. 5.
    Belonogov, G.G., Komp’yuternaya lingvistika i perspektivnye informatsionnye tekhnologii (Computational Linguistics and Advanced Information Technology), Moscow: Russkii Mir, 2004.Google Scholar
  6. 6.
    Braslavski, P.I. and Sokolov, E.A., Comparison of Five Methods for Variable Length Term Extraction, Tr. mezhd. konf. “Dialog 2008” (Proc. Int. Conf. “Dialog 2008”), 2008, pp. 67–74.Google Scholar
  7. 7.
    Vagin, V.N., Golovina, E.Yu., Zagoryanskaya, A.A., and Fomina, M.V., Dostovernyi i pravdopodobnyi vyvod v intellektual’nykh sistemakh (Exact and Plausible Inference in Intelligent Systems), Moscow: Fizmatlit, 2008.Google Scholar
  8. 8.
    Valgina, N.S., Rosenthal’, D.E., and Fomina, M.I., Sovremennyi russkii yazyk: uchebnik (Modern Russian Language: Textbook), Valgina, N.S., Ed., Moscow: Logos, 2002.Google Scholar
  9. 9.
    Gavrilova, T.A. and Khoroshevsky, V.F., Bazy znanii intellektual’nykh sistem (Knowledge Bases of Intelligent Systems), St.-Petersburg: Piter, 2000.Google Scholar
  10. 10.
    Danil’yan, O.G. and Panova, N.I., Sovremennyi slovar’ po obshchestvennym naukam (The Modern Dictionary on Social Studies), Moscow: Eksmo-Press, 2007.Google Scholar
  11. 11.
    Evstigneev, V.A., Primenenie teorii grafov v programmirovanii (Application of Graph Theory to Programming), Moscow: Nauka, 1985.zbMATHGoogle Scholar
  12. 12.
    Ermakov, A.E., Knowledge Extraction from Text and Its Processing: Current State and Prospects, Inform. Tekhn., 2009, no. 7, pp. 50–55.Google Scholar
  13. 13.
    Efremova, N.F., Testovyi kontrol’ v obrazovanii: uchebnoe posobie (Test Control in Education: Textbook), Moscow: Universitetskaya Kniga, 2007.Google Scholar
  14. 14.
    Karpenko, A.P. and Sokolov, N.K., The Semantic Net Complexity Measures in Learning System, Vestn. MGTU, Ser. Priborostr., 2009, no. 1(74), pp. 50–66.Google Scholar
  15. 15.
    Karpenko, M.P., The Problem of Measurement of Knowledge and Education Technologies, Zh. Prakt. Psikhol., 1997, no. 4, pp. 74–79.Google Scholar
  16. 16.
    Kravtsov, L.G., Methodological Problems in Psychological Analysis of Thought in Notions, Mater. I Ros. konf. kogn. nauke (Mat. 1st Rus. Conf. Cogn. Sci.), Kazan: Kazan. Gos. Univ., 2004, URL: http://www.ksu.ru/ss/cogsci04/science/cogsci04/sod.php3 (Cited November 22, 2013).Google Scholar
  17. 17.
    Krasnykh, V.V., Osnovy psikholingvistiki i teorii kommunikatsii (Fundamentals of Psycholinguistics and Theory of Communication), Moscow: Gnosis, 2012.Google Scholar
  18. 18.
    Lerner, I.Ya., Complexity Factors in Cognitive Problems, Nov. Issled. Pedagog. Nauk., 1970, no. 1, pp. 86–91.Google Scholar
  19. 19.
    Luger, G.F., Artificial Intelligence: Structures and Strategies for Complex Problem Solving, London: Addison-Wesley, 2002. Translated under the title Iskusstvennyi intellekt: strategii i metody resheniya slozhnykh problem, Moscow: Vil’yams, 2005.Google Scholar
  20. 20.
    Mikk, Ya.A., Optimizatsiya slozhnosti uchebnogo teksta: v pomoshch’ avtoram i redaktoram (Optimization of Complexity of the Educational Text: For the Aid to Authors and Editors), Moscow: Prosveshchenie, 1981.Google Scholar
  21. 21.
    Mitrofanova, O.A., Semantic Distances: Problems and Prospects, XXXIV Mezhd. filolog. konf: Vypusk 21. “Prikladnaya i matematicheskaya lingvistika” (34 Int. Phil. Conf.: Issue 21. “Applied and Mathematical Linguistics”), St.-Petersburg, 2005, pp. 59–63.Google Scholar
  22. 22.
    Multifunctional Linguistic Processor ETAP-3, URL: http://www.iitp.ru/ru/science.Google Scholar
  23. 23.
    Naikhanova, L.V., Tekhnologiya sozdaniya metodov avtomaticheskogo postroeniya ontologii s primeneniem geneticheskogo i avtomatnogo programmirovaniya (Technology of Creating Methods for Automatic Construction of Ontology Using Genetic and Automata-Based Programming), Ulan-Ude: BNTs,, 2008.Google Scholar
  24. 24.
    Novaya filosofskaya entsiklopediya (New Encyclopaedia of Philosophy), 4 vols., Moscow: Mysl’, 2010, URL: http://iph.ras.ru/enc.htm (Cited April 9, 2014).Google Scholar
  25. 25.
    Noveishii filosofskii slovar’ (Newest Philosophical Dictionary), Minsk: Knizhnyi Dom, 2003, 3rd ed.Google Scholar
  26. 26.
    Pogorelov, A.V., Geometriya: uchebnik dlya 7–11 klassov obshcheobrazovatel’nykh uchrezhdenii (Geometry: Textbook for Secondary School), Moscow: Prosveshchenie, 1995.Google Scholar
  27. 27.
    Popov, E.V., Obshchenie c EVM na estestvennom yazyke (Natural Language Interaction with Computers), Moscow: Nauka, 1982.Google Scholar
  28. 28.
    Romadina, O.G. and Rakitina, E.A., Procedure of the Estimation of Complexity of Educational Problems on Computer Science, Vopr. Sovrem. Nauki Prakt., 2010, no. 10–12(31), pp. 146–151.Google Scholar
  29. 29.
    Ryzhenko, N.G., Graphic Modeling as a Method for Defining Complexity of Solutions to School Text Problems, Matem. Inform., Omsk, 2001, issue 1, pp. 99–103.Google Scholar
  30. 30.
    Fedotov, I.E., Nekotorye priemy parallel’nogo programmirovaniya: uchebnoe posobie (Some Methods of Parallel Programming: Textbook), Moscow: MGIREA, 2008.Google Scholar
  31. 31.
    Filippovich, Yu.N. and Prokhorov, A.V., Semantika informatsionnykh tekhnologii: opyty slovarnotezaurusnogo opisaniya (Semantics of Information Technologies: Experience of Dictionary-Thesaurus Description), Moscow: MGUP, 2002.Google Scholar
  32. 32.
    Collins-Tompson, K., Bennett, P., White, R., Chica, S., and Sontag, D., Personalizing Web Search Results by Reading Level, Proc. 20th ACM Int. Conf. on Information and Knowledge Management, New York, 2011, pp. 403–412.Google Scholar
  33. 33.
    Dubay, W., The Principles of Readability, Costa Mesa: Impact Information, 2004.Google Scholar
  34. 34.
    Hartley, R.V.L., Transmission of Information, Bell Syst. Tech. J., 1928, July, pp. 535–563.Google Scholar
  35. 35.
    Leacock, C. and Chodorow, M., Combining Local Context and WordNet Similarity for Word Sense Identification, in WordNet: An Electronic Lexical Database, Fellbaum, C., Ed., Boston: MIT Press, 1998, pp. 265–283.Google Scholar
  36. 36.
    Patwardhan, S., Banerjee, S., and Pedersen, T., UsingMeasures of Semantic Relatedness forWord Sense Disambiguation, Proc. 4th Int. Conf. on Intelligent Text Processing and Computational Linguistics, 2003, pp. 241–257.CrossRefGoogle Scholar
  37. 37.
    Shannon, C.E., A Mathematical Theory of Communication, Bell Sys. Tech. J., 1948, vol. 27, pp. 379–423, 623–656.CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    Anisimovich, K.V., Druzhkin, K.Ju., Minlos, F.R., Petrova, M.A., Selegey, V.P., and Zuev, K.A., Syntactic and Semantic Parser Based on ABBYY Compreno Linguistic Technologies, in Kom’yuternaya lingvistika i intellektual’nye tekhnologii (Computer Linguistics and Intellectual Technologies), 2012, pp. 810–822, URL: http://www.dialog-21.ru/digests/dialog2012/materials/pdf/Anisimovich.pdf (Cited December 2, 2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations