Skip to main content
Log in

Time-suboptimal feedback design via linear matrix inequalities

  • Topical Issue
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

In this paper, a time-optimal control problem is considered for plants represented by chains of integrators. A suboptimal solution obtained by using the implicit Lyapunov function approach is proposed in the form of continuous finite-time state feedback regulator. An algorithm for optimal tuning the parameters of the controller is formulated as a finite-dimensional semidefinite program. A robustness-oriented comparison of the optimal and suboptimal solutions in practical implementations of the proposed controller is performed via the numerical example of double integrator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feldbaum, A., Optimal Processes in Systems of Automatic Control. Avtom. Telemekh., 1953, vol. 14, no. 6, pp. 721–728.

    Google Scholar 

  2. Pontryagin, L.S., Boltyanski, V.G., Gamkrelidze, R.V., et al., The Mathematical Theory of Optimal Processes, New York: Interscience, 1964.

    MATH  Google Scholar 

  3. Bellman, R.E., Dynamic Programming, New Jersey: Princeton Univ. Press, 1957.

    MATH  Google Scholar 

  4. Lasserre, J.B., Prieur, C., and Henrion, D., Nonlinear Optimal Control: Numerical Approximations via Moments and LMI-Relaxations, Proc. 44th IEEE Conf. Decision Control, 2005, pp. 1648–1653.

    Chapter  Google Scholar 

  5. Chernousko, F.L., Ananevskii, I.M., and Reshmin, S.A., Control of Nonlinear Dynamical Systems: Methods and Applications, Berlin: Springer-Verlag, 2008.

    Book  Google Scholar 

  6. Dinuzzo, F. and Ferrara, A., Higher Order Sliding Mode Controllers with Optimal Reaching, IEEE Trans. Automat. Control, 2009, vol. 54, no. 9, pp. 2126–2136.

    Article  MathSciNet  Google Scholar 

  7. Boltyanski, V.G. and Poznyak, A.S., The Robust Maximum Principle: Theory and Applications, Boston: Birkhäuser, 2012.

    Book  Google Scholar 

  8. Bernstein, D.S., Optimal Nonlinear, but Continuous, Feedback Control of Systems with Saturating Actuators, Int. J. Control, 1995, vol. 62, no. 5, pp. 1209–1216.

    Article  MATH  Google Scholar 

  9. Glizer, V.Y. and Turetsky, V., Robust Controllability of Linear Systems, New York: Nova Science, 2012.

    MATH  Google Scholar 

  10. Bertsekas, D.P., Dynamic Programming and Suboptimal Control: A Survey from ADP to MPC, Eur. J. Control, 2005, vol. 11, pp. 310–334.

    Article  MATH  MathSciNet  Google Scholar 

  11. Bohl, A.H. and McAvoy, T.J., Linear Feedback vs. Time Optimal Control, Indust. Eng. Chem. Process Des. Development, 1976, vol. 15, no. 1, pp. 24–33.

    Article  Google Scholar 

  12. Zubov, V.I., On Systems of Homogenous Differential Equations with Generalized Homogenous Righthand Sides, Izv. Vissh. Uchebn. Zaved., Mat., 1958, no. 1, pp. 80–88.

    Google Scholar 

  13. Rosier, L., Homogenous Lyapunov Function for Homogenous Coninuous Vector Field, Syst. Control Lett., 1992, vol. 19, pp. 467–473.

    Article  MATH  MathSciNet  Google Scholar 

  14. Bhat, S.P. and Bernstein, D.S., Geometric Homogeneity with Applications to Finite-time Stability, Math. Control Sig. Sys., 2005, vol. 17, pp. 101–127.

    Article  MATH  MathSciNet  Google Scholar 

  15. Bernuau, E., Efimov, D., Perruquetti, W., et al., On Homogeneity and Its Application in Sliding Mode Control, J. Franklin Inst., 2014, vol. 351, no. 4, pp. 1866–1901.

    Article  MathSciNet  Google Scholar 

  16. Adamy, J. and Flemming, A., Soft Variable-Structure Controls: A Survey, Automatica, 2004, vol. 40, pp. 1821–1844.

    Article  MATH  MathSciNet  Google Scholar 

  17. Polyakov, A., Efimov, D., and Perruquetti, W., Finite-time and Fixed-time Stabilization: Implicit Lyapunov Function Approach, Automatica, 2015, vol. 51, no. 1, pp. 332–340.

    Article  MathSciNet  Google Scholar 

  18. Courant, R. and John, F., Introduction to Calculus and Analysis, New York: Springer, 2000, vol. II, no. 1.

    Google Scholar 

  19. Korobov, V.I., Metod funktsii upravlyaemosti (Controllability Function Method), Moscow: Regular and Chaotic Dynamics, 2007.

    Google Scholar 

  20. Boyd, S., El Ghaoui, L., Feron, E., et al., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994.

    Book  MATH  Google Scholar 

  21. Polyak, B.T., Khlebnikov, M.V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems Subject to Exogenous Disturbances: The Linear Matrix Inequalitiy Technique), Moscow: LENAND, 2014.

    Google Scholar 

  22. Poznyak, A., Polyakov, A., and Azhmyakov, V., Attractive Ellipsoids in Robust Control, Boston: Birkhäuser, 2014.

    Book  MATH  Google Scholar 

  23. Utkin, V.I., Guldner, J., and Shi, J., Sliding Mode Control in Electro-Mechanical Systems, Boca Raton: CRC Press, 2009.

    Book  Google Scholar 

  24. Biagiotti, L. and Zanasi, R., Time-Optimal Regulation of a Chain of Integrators with Saturated Input and Internal Variables: An Application to Trajectory Planning, Proc. 8th IFAC Symp. Nonlin. Control Syst., 2010, pp. 1278–1283.

    Google Scholar 

  25. Wang, X., Saberi, A., Stoorvogel, A., et al., Control of a Chain of Integrators Subject to Actuator Saturation and Disturbances, Int. J. Robust Nonlin. Control, 2012, vol. 22, no. 14, pp. 1562–1570.

    Article  MATH  MathSciNet  Google Scholar 

  26. Control of Uncertain Systems with Bounded Inputs, Lect. Notes in Control Inform. Sci., Tarbouriech, S. and Garcia, G., Eds., New York: Springer-Verlag, 1997.

    MATH  Google Scholar 

  27. Shinar, J., Glizer, V.Y., and Turetsky, V., Capture Zone of Linear Strategies in Interception Problems with Variable Structure Dynamics, J. Franklin Inst., 2014, vol. 351, no. 4, pp. 2378–2395.

    Article  MathSciNet  Google Scholar 

  28. Roxin, E., On Finite Stability in Control Systems, Rendiconti del Circolo Matematico di Palermo, 1966, vol. 15, no. 3, pp. 273–283.

    Article  MATH  MathSciNet  Google Scholar 

  29. Bhat, S.P. and Bernstein, D.S., Finite-time Stability of Continuous Autonomous Systems, SIAM J. Control Optimiz., 2000, vol. 38, no. 3, pp. 751–766.

    Article  MATH  MathSciNet  Google Scholar 

  30. Orlov, Y., Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems, SIAM J. Control Optimiz., 2005, vol. 43, no. 4, pp. 1253–1271.

    Article  MATH  Google Scholar 

  31. Polyakov, A. and Poznyak, A., Method of Lyapunov Functions for Systems with Higher-order Sliding Modes, Autom. Remote Control, 2011, vol. 72, no. 5, pp. 944–963.

    Article  MATH  MathSciNet  Google Scholar 

  32. Polyakov, A. and Fridman, L., Stability Notions and Lyapunov Functions for Sliding Mode Control Systems, J. Franklin Inst., 2014, vol. 351, no. 4, pp. 1831–1865.

    Article  MathSciNet  Google Scholar 

  33. Zubov, V.I., Methods of A.M. Lyapunov and Their Applications, Leiden: Noordhoff, 1964.

    Google Scholar 

  34. Hahn, W., Stability of Motion, New York: Springer-Verlag, 1967.

    Book  MATH  Google Scholar 

  35. Hermes, H., Nilpotent Approximations of Control Systems and Distributions, SIAM J. Control Optimiz., 1986, vol. 24, pp. 731–736.

    Article  MATH  MathSciNet  Google Scholar 

  36. Levant, A., Homogeneity Approach to High-order Sliding Mode Design, Automatica, 2005, vol. 41, pp. 823–830.

    Article  MATH  MathSciNet  Google Scholar 

  37. Ryan, E.P., Universal Stabilization of a Class of Nonlinear Systems with Homogeneous Vector Fields, Syst. Control Lett., 1995, vol. 26, pp. 177–184.

    Article  Google Scholar 

  38. Hong, Y., H Control, Stabilization, and Input-output Stability of Nonlinear Systems with Homogeneous Properties, Automatica, 2001, vol. 37, no. 7, pp. 819–829.

    Article  MATH  Google Scholar 

  39. Bernuau, E., Polyakov, A., Efimov, D., et al., Verification of ISS, iISS and IOSS Properties Applying Weighted Homogeneity, Syst. Control Lett., 2013, vol. 62, no. 12, pp. 1159–1167.

    Article  MATH  MathSciNet  Google Scholar 

  40. Bacciotti, A. and Rosier, L., Lyapunov Functions and Stability in Control Theory, New York: Springer, 2005, 2nd ed.

    Book  Google Scholar 

  41. Sontag, E.D., Smooth Stabilization Implies Coprime Factorization, IEEE Trans. Automat. Control, 1989, vol. 34, no. 4, pp. 435–443.

    Article  MATH  MathSciNet  Google Scholar 

  42. Dashkovskiy, S.N., Efimov, D.V., and Sontag, E.D., Input to State Stability and Allied System Properties Autom. Remote Control, 2011, vol. 72, no. 8, pp. 1579–1614.

    Article  MATH  MathSciNet  Google Scholar 

  43. Korobov, V.I., A General Approach to Synthesis Problem, Dokl. Akad. Nauk SSSR, 1979, vol. 248, pp. 1051–1063.

    MathSciNet  Google Scholar 

  44. Tuan, H.D., Apkaryan, P., and Tuy, H., Advanced Global Optimization Algorithms for Parameterized LMIs, Proc. 38th Conf. Decision Control, Pheonix, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Polyakov.

Additional information

Original Russian Text © A.E. Polyakov, 2015, published in Avtomatika i Telemekhanika, 2015, No. 5, pp. 145–164.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, A.E. Time-suboptimal feedback design via linear matrix inequalities. Autom Remote Control 76, 847–862 (2015). https://doi.org/10.1134/S0005117915050100

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117915050100

Keywords

Navigation