Advertisement

Automation and Remote Control

, Volume 76, Issue 1, pp 172–178 | Cite as

An approach to building a multiprotocol CNC system

  • G. M. Martinov
  • A. B. Lyubimov
  • A. I. Bondarenko
  • A. E. Sorokoumov
  • I. A. Kovalev
Automation in Industry

Abstract

This paper examines the questions of multiprotocol realization of a computer numerical control system for heterogeneous technological complexes. The basic set of the industrial protocols of a CNC system is selected and substantiated. The authors propose the multiprotocol CNC system kernel architecture and reveal practical application aspects of the CNC system for turning and milling-engraving machines.

Keywords

Remote Control Controller Area Network Computer Numerical Control System Numerical Control System Master Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grigoriev, S.N., Andreev, A.G., and Martinov, G.M., Development Prospects of Cross-Platform Computer Numerical Control Systems for High-Tech Equipment, Avtomatiz. Promyshl., 2011, no. 5, pp. 3–8.Google Scholar
  2. 2.
    Grigoriev, S.N. and Martinov, G.M., Scalable Open Cross-Platform Kernel of PCNC System for Multi-Axis Machine Tool, Procedia CIRP, 2012, no. 1, pp. 238–243.Google Scholar
  3. 3.
    Martinov, G.M. and Kozak, N.V., Decomposition and Synthesis of the Logic Systems Software Components, Pribor. Sist. Upravlen., Kontrol’, Diagn., 2006, no. 12, pp. 4–11.Google Scholar
  4. 4.
    Martinov, G.M., Kozak, N.V., Nezhmetdinov, R.A., and Pushkov, R.L., Design Principle for a Distributed Numerical Control System with Open Modular Architecture, Vestn. MGTU Stankin, 2010, no. 4(12), pp. 116–122.Google Scholar
  5. 5.
    Tikhonov, A.O. and Likhanov, P.S., Diagnosis and Tuning Tools for ServoCon NC System, Avtomatiz. Promyshl., 2011, no. 5, pp. 19–22.Google Scholar
  6. 6.
    Sosonkin, V.L. and Martinov, G.M., Architectonick of Digital Tracking Drives of TechnologicalMachines Supplies, Mekhatron., Avtomatiz., Upravlen., 2005, no. 10, pp. 24–30.Google Scholar
  7. 7.
    Dudkin, A.V., EtherCAT and XFC Technologies for Superfast Synchronous Control, Avtomatiz. Promyshl., 2010, no. 5, pp. 40–42.Google Scholar
  8. 8.
    Bélai, I. and Drahoš, P., The Industrial Communication Systems Profibus and PROFInet, Int. Conf. Appl. Natural Sci., Trnave, Slovakia, 2009, pp. 329–336Google Scholar
  9. 9.
    Martinov, G.M. and Martinova, L.I., Trends in the Numerical Control of Machine-Tool Systems, Russ. Eng. Res., 2010, vol. 30, no. 10, pp. 1041–1045.CrossRefGoogle Scholar
  10. 10.
    Martinova, L.I., Pushkov, R.L., Kozak, N.V., and Trofimov, E.S., Solution to the Problems of Axle Synchronization and Exact Positioning in a Numerical Control System, Autom. Remote Control, 2014, vol. 75, no. 1, pp. 129–138.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Martinov, G.M., Current Trends in Computer Control Systems of Technological Equipment, Vestn. MGTU Stankin, 2010, no. 1, pp. 74–79.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • G. M. Martinov
    • 1
  • A. B. Lyubimov
    • 1
  • A. I. Bondarenko
    • 1
  • A. E. Sorokoumov
    • 1
  • I. A. Kovalev
    • 1
  1. 1.Moscow State University of Technology (STANKIN)MoscowRussia

Personalised recommendations