Automation and Remote Control

, Volume 75, Issue 7, pp 1283–1300 | Cite as

On extension of the maximin problem

  • A. G. ChentsovEmail author
  • Yu. V. Shapar’
Topical Issue


Consideration was given to an abstract version of the program maximin problem with constraints of the pulse and moment nature. The “moment” constraints were relaxed, and the asymptotics of the realized values of maximin in the problems with relaxed constraints was studied together with its representation in the class of generalized elements (controls) defined as finite-additive measures. In particular, the questions of universal “within the given range” representation of the above asymptotics were investigated.


Remote Control Topological Space Game Problem Directed Family Moment Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krasovskii, N.N., Teoriya upravleniya dvizheniem (Motion Control Theory), Moscow: Nauka, 1968.Google Scholar
  2. 2.
    Krasovskii, N.N., Igrovye zadachi o vstreche dvizhenii (Game Problems of Motion Encounter), Moscow: Fizmatlit, 1970.zbMATHGoogle Scholar
  3. 3.
    Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games), Moscow: Nauka, 1974.zbMATHGoogle Scholar
  4. 4.
    Chentsov, A.G., Finitely Additive Measures and Relaxations of Extremal Problems, London: Plenum, 1996.zbMATHGoogle Scholar
  5. 5.
    Chentsov, A.G., Asymptotic Attainability, Dordrecht: Kluwer, 1997.CrossRefzbMATHGoogle Scholar
  6. 6.
    Chentsov, A.G. and Morina, S.I., Extensions and Relaxation, London: Kluwer, 2002.CrossRefGoogle Scholar
  7. 7.
    Chentsov, A.G., Finitely Additive Measures and Extension of Abstract Control Problems, J. Math. Sci., 2006, vol. 133, no. 2, pp. 1045–1206.CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Chentsov, A.G., On Representation of Maximin in the Game Problem with Asymptotic Constraints, Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki, 2010, no. 3, pp. 104–119.Google Scholar
  9. 9.
    Chentsov, A.G. and Shapar’, Yu.V., On One Game Problem with Approximate Observation of Constraints, Dokl. Ross. Akad. Nauk, 2009, vol. 427, pp. 170–175.MathSciNetGoogle Scholar
  10. 10.
    Chentsov, A.G. and Shapar’, Yu.V., Finite-additive Measures and Extensions of the Game Problems with Asymptotic Constraints, Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki, 2010, no. 1, pp. 89–111.Google Scholar
  11. 11.
    Chentsov, A.G., On the Approach-Evasion Game Problems, Prikl. Mat. Mekh., 1974, vol. 38, no. 2, pp. 211–223.MathSciNetGoogle Scholar
  12. 12.
    Chentsov, A.G., On the Approach-Evasion Differential Game, Prikl. Mat. Mekh., 1974, vol. 38, no. 4, pp. 580–589.MathSciNetGoogle Scholar
  13. 13.
    Chentsov, A.G. and Shapar, Ju.V., The Extension Construction of a Game Problem in the Class of Finitely Additive Measures, Int. Elect. J. Pure Appl. Math., 2010, vol. 1, no. 4, pp. 365–415.Google Scholar
  14. 14.
    Levin, G.M. and Tanaev, V.S., Dekompozitsionnye metody optimizatsii proektnykh reshenii (Decomposition Methods of Design Optimization), Minsk: Nauka i Tekhnika, 1978.Google Scholar
  15. 15.
    Tanaev, V.S., Dekompozitsiya i agregirovanie v zadachakh matematicheskogo programmirovaniya (Decomposition and Aggregation in Mathematical Programming Problems), Minsk: Nauka i Tekhnika, 1987.Google Scholar
  16. 16.
    Kuratovwski, Ê. and Mostowski, A., Set Theory, Amsterdam: North-Holland, 1967. Translated under the title Teoriya mnozhestv, Moscow: Mir, 1970.Google Scholar
  17. 17.
    Warga, J., Optimal Control of Differential and Functional Equations, New York: Academic, 1972. Translated under the title Optimal’noe upravlenie differentsial’nymi i funktsional’nymi uravneniyami, Moscow: Nauka, 1979.zbMATHGoogle Scholar
  18. 18.
    Engelking, R., General Topology, Warszawa: PWN, 1985. Translated under the title Obshchaya topologiya, Moscow: Mir, 1986.Google Scholar
  19. 19.
    Bourbaki, N., Topologie genéral. Les structures fondamentales de l’analyse, Paris: Hermann, 1966. Translated under the title Obshchaya topologiya. Osnovnye struktury, Moscow: Nauka, 1968.Google Scholar
  20. 20.
    Neveu, J., Bases matheématiques du calcul des probabilités, Paris: Masson & Cie, 1964. Translated under the title Matematicheskie osnovy teorii veroyatnostei, Moscow: Mir, 1969.Google Scholar
  21. 21.
    Reed, M. and Simon, B., Methods of Modern Mathematical Physics I: Functional Analysis, New York: Academic, 1972, vol. 1. Translated under the title Metody sovremennoi matematicheskoi fiziki, Moscow: Mir, 1977, tom 1.zbMATHGoogle Scholar
  22. 22.
    Dunford, N. and Schwartz, J.T., Linear Operators, New York: Interscience, 1958. Translated under the title Lineinye operatory. Obshchaya teoriya, Moscow: Inostrannaya Litetatura, 1962.zbMATHGoogle Scholar
  23. 23.
    Chentsov, A.G., Elementy konechno-additivnoi teorii mery. I (Elements of Finite-Additive Theory of Measure. I), Yekaterinburg: Redak.-Izdat. Otd. Ural. Gos. Tekh. Univ.-Ural. Politekh. Univ., 2008.Google Scholar
  24. 24.
    Rao, K.P.S.B. and Rao, M.B., Theory of Charges. A Study of Finitely Additive Measures, London: Academic, 1983.zbMATHGoogle Scholar
  25. 25.
    Chentsov, A.G., Filters and Ultrafilters in the Constructions of the Attraction Sets, Vestn. Udmurt. Univ., Mat. Mekh. Komp’yut. Nauki, 2011, no. 1, pp. 113–142.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Krasovskii Institute of Mathematics and MechanicsUral Branch of Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations