Control and observation for dynamical queueing networks. II.

Abstract

We study the optimal control problem in a queueing network under incomplete data. With dynamic programming, we solve the optimal control problem for the network state and observations. We give a general method that can answer what, where, when, and how to measure in the network when solving dynamic routing problems. We define general notions and methods of the theory of network measurement. We give examples of solving joint optimal control and observation problems for elementary network structures and modern telecommunication systems.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Solodyannikov, Yu.V., Control and Observation for Dynamical Queueing Networks. I, Autom. Remote Control, 2014, vol. 75, no. 3, pp. 422–446.

    Article  Google Scholar 

  2. 2.

    Solodyannikov, Yu.V., Some Problems of Network Measurement, in Theoretical Problems of Computational Networks, Kuibyshev: Kuibysh. Gos. Univ., 1986, pp. 74–102.

    Google Scholar 

  3. 3.

    Solodyannikov, Yu.V., On Statistics of Queueing Systems and Networks, in Stability Problems in Stochastic Models, Proc. X All-Union Seminar, Kuibyshev: Kuibysh. State Univ., 1987, pp. 101–116.

    Google Scholar 

  4. 4.

    Solodyannikov, Yu.V., Certain Statistical Estimates for Network Measurement Problems, in Control and Observation in Computer Communication Networks, Kuibyshev: Kuibysh. Gos. Univ., 1983, pp. 109–137.

    Google Scholar 

  5. 5.

    Eliott, R.J., Aggoun, L., and Moore, J.B., Hidden Markov Models. Estimation and Control, New York: Springer-Verlag, 1995.

    Google Scholar 

  6. 6.

    Fleming, W.H. and Rishel, R.W., Deterministic and Stochastic Optimal Control, Springer-Verlag, 1975. Translated under the title Optimal’noe upravlenie determinirovannymi i stokhasticheskimi sistemami, Moscow: Mir, 1978.

    Google Scholar 

  7. 7.

    Joshikawa, T. and Kobajashi, H., Separation of Estimation and Control for Decentralized Stochastic Control Systems, Automatica, 1978, vol. COM-25, no. 1. pp. 95–104.

    Google Scholar 

  8. 8.

    Davis, M.H.A., Linear Estimation and Stochastic Control, London: Chapman, 1977. Translated under the title Lineinoe otsenivanie i stokhasticheskoe upravlenie, Moscow: Nauka, 1984.

    Google Scholar 

  9. 9.

    Basharin, G.P. and Serebrennikova, N.V., Computing VVH in Cellular Communication Networks while Accounting for the Users’ Mobility, Vestn. Ross. Univ. Druzhby Narodov, Ser. Prikl. Komp. Mat., 2005, vol. 4, no. 1, pp. 11–18.

    Google Scholar 

  10. 10.

    Ershov, V.A. and Kuznetsov, N.A., Mul’tiservisnye telekommunikatsionnye seti (Multiservice Telecommunication Networks), Moscow: Mosk. Gos. Tekhn. Univ., 2003.

    Google Scholar 

  11. 11.

    Krylov, V.V. and Samokhvalova, S.S., Teoriya teletrafika i ee prilozheniya (Theory of Teletraffic and Its Applications), St. Petersburg: BKhV-Peterburg, 2005.

    Google Scholar 

  12. 12.

    Boel, R. and Varaia, P., Optimal Control of Jump Processes, SIAM J. Control Optim., 1977, vol. 15, no. 1, pp. 92–119.

    Article  MATH  Google Scholar 

  13. 13.

    Khadzhiev, D.I., On Filtering Semimartingales in Case of Observations over Point Processes, Teor. Veroyat. Primen., 1978, no. 1, pp. 175–184.

    Google Scholar 

  14. 14.

    Miller, A.B., Using Methods of Stochastic Control to Prevent Overloads in Data Transmission Networks, Autom. Remote Control, 2010, vol. 71, no. 9, pp. 1804–1815.

    Article  MATH  MathSciNet  Google Scholar 

  15. 15.

    Wang, E. and Hajek, B., Stochastic Processes in Engineering Systems, Berlin: Springer-Verlag, 1985.

    Google Scholar 

  16. 16.

    Miller, B.M., Avrachenkov, K.E., Stepanyan, K.V., and Miller, G.B., Flow Control as a Stochastic Optimal Control Problem with Incomplete Information, Probl. Inf. Transm., 2005, vol. 41, no. 2, pp. 150–170.

    Article  MATH  MathSciNet  Google Scholar 

  17. 17.

    Solodyannikov, Yu.V., On Direct and Inverse Problems of Nonparametric Statistics in Queueing Systems, Izv. Vyssh. Uchebn. Zaved., Mat., 1989, no. 10, pp. 81–84.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Solodyannikov.

Additional information

Original Russian Text © Yu.V. Solodyannikov, 2014, published in Avtomatika i Telemekhanika, 2014, No. 5, pp. 91–114.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solodyannikov, Y.V. Control and observation for dynamical queueing networks. II.. Autom Remote Control 75, 880–899 (2014). https://doi.org/10.1134/S0005117914050075

Download citation

Keywords

  • Time Slot
  • Remote Control
  • Optimal Control Problem
  • Queue Length
  • Bellman Equation