Skip to main content
Log in

Heuristic approximation method for a random flow of events by an MC-flow with arbitrary number of states

  • Stochastic Systems, Queueing Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper considers the approximation problem for an observable random flow of events using an MC-flow. A separation algorithm for stationarity segments is suggested. In addition, we propose an evaluation algorithm for the number of states and intensity of the approximating MC-flow by event occurrence instants in the observable flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guoqiang, Yu, Jianming, Hu, Changshui Zhang, et al., Short-Term Traffic Flow Forecasting Based on Markov Chain Model, IEEE Intelligent Vehicles Symp., Proc. IEEE, 2003, pp. 208–212.

    Google Scholar 

  2. Crisostomi, E., Kirkland, S., and Shorten, R., A Google-Like Model of Road Network Dynamics and Its Application to Regulation and Control, Int. J. Control, 2011, vol. 84, pp. 633–651.

    Article  MathSciNet  MATH  Google Scholar 

  3. Baykal-Gursoy, M., Xiao, W., and Ozbay, K., Modeling Traffic Flow Interrupted by Incidents, Eur. J. Oper. Res., 2009, vol. 195, pp. 127–138.

    Article  MathSciNet  Google Scholar 

  4. Olaleye, O.T., Sowunmi, F.A., Abiola, O.S., et al., A Markov Chain Approach to the Dynamics of Vehicular Traffic Characteristics in Abeokuta Metropolis, Res. J. Appl. Sci. Eng. Technol., 2009, vol. 1(3), pp. 160–166.

    Google Scholar 

  5. Neely, M.J., Delay Analysis for Maximal Scheduling with Flow Control in Wireless Networks with Bursty Traffic, IEEE Trans. Networking, 2009, vol. 17, no. 4, pp. 1146–1159.

    Article  Google Scholar 

  6. Anderson, A.T. and Nielsen, B.F., A Markovian Approach for Modeling Packet Traffic with Long-Range Dependence, IEEE J. Selected Areas Commun., 1998, vol. 16, no. 5, pp. 719–732.

    Article  Google Scholar 

  7. Hayes, J.F. and Ganesh Babu, T.V., Modeling and Analysis of Telecommunications Networks, New Jersey: Wiley-Interscience, 2004.

    Book  Google Scholar 

  8. Gortsev, A.M. and Nezhel’skaya, L.A., Estimation of the Dead Time and Parameters of a Half-synchronous Double Stochastic Flow of Events, Izmeritel’n. Tekh., 2003, no. 6, pp. 7–13.

    Google Scholar 

  9. Gortsev, A.M. and Nezhel’skaya, L.A., Parameter Estimation for a Half-synchronous Double Stochastic Flow of Events by the Method of Moments, Vestn. Tomsk. Gos. Univ., 2002, no. 1(1), pp. 18–23.

    Google Scholar 

  10. Vasil’eva, L.A. and Gortsev, A.M., Estimation of the Dead Time of an Asynchronous Double Stochastic Flow of Events under Incomplete Observability, Autom. Remote Control, 2003, vol. 64, no. 12, pp. 1890–1898.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bushlanov, I.V. and Gortsev, A.M., Optimal Estimation of the States of a Synchronous Double Stochastic Flow of Events, Autom. Remote Control, 2004, vol. 65, no. 9, pp. 1389–1399.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dang, T.D., Sonkoly, B., and Molnar, S., Fractal Analysis and Modeling of VoIP Traffic, Networks 2004, Vienna, Austria, 2004, pp. 95–104.

    Google Scholar 

  13. Karasaridis, A. and Hatzinakos, D., Network Heavy Traffic Modeling Using a Stable Self-Similar Process, IEEE Trans. Commun., 2001, vol. 49, no. 7, pp. 1203–1214.

    Article  MATH  Google Scholar 

  14. Dudin, A.N. and Klimenok, V.I., Sistemy massovogo obsluzhivaniya s korrelirovannymi potokami (Queuing Systems with Correlated Flows), Minsk: Belarus. Gos. Univ., 2000.

    Google Scholar 

  15. Bekkerman, E.N., Kataev, S.G., and Kataeva, S.S., On a Recognition Algorithm for an MC-flow of Events, Vestn. Tomsk. Gos. Univ., 2000, no. 271(1), pp. 41–45.

    Google Scholar 

  16. Basharin, G.P., Kokotushkin, V.A., and Naumov, V.A., On the Equivalent Substitution Method for Calculation of Fragments of Communication Networks. I, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1979, no. 6, pp. 92–99.

    Google Scholar 

  17. Basharin, G.P., Kokotushkin, V.A., and Naumov, V.A., On the Equivalent Substitution Method for Calculation of Fragments of Communication Networks. II, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1980, no. 1, pp. 55–61.

    Google Scholar 

  18. Khinchin, A.Ya., Raboty po matematicheskoi teorii massovogo obsluzhivaniya (Proceedings on Mathematical Theory of Queuing), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  19. Veroyatnost’ i matematicheskaya statistika (Probability and Mathematical Statistics), Prokhorov, Yu.V., Ed., Moscow: Bol’shaya Rossiiskaya Entsiklopedia, 1999.

    Google Scholar 

  20. Bekkerman, E.N., Kataev, S.G., Kataeva, S.S., et al., Approximation of a Real Flow of Events by an MC-flow, Vestn. Tomsk. Gos. Univ., 2005, no. 14, pp. 248–252.

    Google Scholar 

  21. Paxson, V. and Floyd, S., The Failure of Poisson Modeling, IEEE ACM Trans. Networking, 1995, no. 3(3), pp. 226–244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.N. Bekkerman, S.G. Kataev, S.S. Kataeva, 2013, published in Avtomatika i Telemekhanika, 2013, No. 9, pp. 20–33.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekkerman, E.N., Kataev, S.G. & Kataeva, S.S. Heuristic approximation method for a random flow of events by an MC-flow with arbitrary number of states. Autom Remote Control 74, 1449–1459 (2013). https://doi.org/10.1134/S0005117913090026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117913090026

Keywords

Navigation