Automation and Remote Control

, Volume 74, Issue 4, pp 543–574 | Cite as

Fractional integro-differential calculus and its control-theoretical applications. I. Mathematical fundamentals and the problem of interpretation

  • A. G. Butkovskii
  • S. S. Postnov
  • E. A. Postnova
Reviews

Abstract

The review is devoted to using the fractional integro-differential calculus for description of the dynamics of various systems and control processes. Consideration was given to the basic notions of the fractional integro-differential calculus and the problem of interpretation of the fractional operators. Presented were examples of physical systems described in terms of the apparatus under consideration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Samko, S.G., Kilbas, A.A., and Marichev, O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Integrals and Derivatives of Fractional order and Their Applications), Minsk: Nauka i Tekhnika, 1987.MATHGoogle Scholar
  2. 2.
    Oldham, K.B. and Spanier, J., The Fractional Calculus, San Diego: Academic, 1974.MATHGoogle Scholar
  3. 3.
    Machado, T.J., Kiryakova, V., and Mainardi, F., Recent History of Fractional Calculus, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 1140–1153.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Miller, K.S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: Wiley, 1993.MATHGoogle Scholar
  5. 5.
    Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., and Feliu, V., Fractional-order Systems and Controls: Fundamentals and Applications, London: Springer, 2010.MATHCrossRefGoogle Scholar
  6. 6.
    Uchaikin, V.V., Metod drobnykh proizvodnykh (Method of Fractional Derivatives), Ul’yanovsk: Artishok, 2008.Google Scholar
  7. 7.
    Potapov, A.A., Fraktaly v radiofizike i radiolokatsii. Topologiya vyborki (Fractals in Radio Physics and Radio Location. Topology of Sampling) Moscow: Universitetskaya Kniga, 2005.Google Scholar
  8. 8.
    Fraktaly i drobnye operatory (Fractals and Fractional Operators), Gil’mutdinov, A.Kh., Ed., Kazan: “F en” AN RT, 2010.Google Scholar
  9. 9.
    Tarasov, V.E., Modeli teoreticheskoi fiziki s integro-differentsirovaniem drobnogo poryadka (Models of Theoretical Physics with Fractional-order Intergo-Differentiation), Izhevsk: RKhD, 2011.Google Scholar
  10. 10.
    Tarasov, V.E., Fractional Vector Calculus and Fractional Maxwell’s Equations, Ann. Phys., 2008, vol. 323, pp. 2756–2778.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Das, S., Functional Fractional Calculus for System Identification and Controls, Berlin: Springer, 2008.MATHGoogle Scholar
  12. 12.
    Nishimoto, K., An Essence of Nishimoto’s Fractional Calculus (Calculus of the 21st Century), Integrals and Differentiations of Arbitrary Order, Koriyama: Descartes, 1991.Google Scholar
  13. 13.
    Nakhushev, A.M., Drobnoe ischislenie i ego primenenie (Fractional Calculus and Its Application), Moscow: Fizmatlit, 2003.MATHGoogle Scholar
  14. 14.
    Kiryakova, V.S., Generalized Fractional Calculus and Applications, New York: Wiley, 1994.MATHGoogle Scholar
  15. 15.
    Margulies, T., Mathematics and Science Applications and Frontiers: With Fractional Calculus, Bloomington: Xlibris Corp., 2008.Google Scholar
  16. 16.
    Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.MATHGoogle Scholar
  17. 17.
    Podlubny, I., Fractional Differential Equations, San Diego: Academic, 1999.MATHGoogle Scholar
  18. 18.
    Diethelm, K., The Analysis of Fractional Differential Equations, Berlin: Springer, 2010.MATHCrossRefGoogle Scholar
  19. 19.
    Pskhu, A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka (Fractional-order Partial Derivative Equations), Moscow: Nauka, 2005.MATHGoogle Scholar
  20. 20.
    Tarasov, V.E., Fractional Dynamics, Berlin: Springer, 2010.MATHCrossRefGoogle Scholar
  21. 21.
    Zaslavsky, G.M., Hamiltonian Chaos and Fractional Dynamics, Oxford: Oxford Univ. Press, 2008.MATHGoogle Scholar
  22. 22.
    Vasil’ev, V.V. and Simak, L.A., Drobnoe ischislenie i approksimatsionnye metody v modelirovanii dinamicheskikh sistem (Fractional Calculus and Methods of Approximation in Modeling of Dynamic Systems), Kiev: Nat. Akad. Nauk Ukrainy, 2008.Google Scholar
  23. 23.
    Lakshmikantham, V., Leela, S., and Vasundhara, D.J., Theory of Fractional Dynamic Systems, Cambridge: Cambridge Academic Publishers, 2009.MATHGoogle Scholar
  24. 24.
    Petras, I., Fractional-Order Nonlinear Systems, Berlin: Springer, 2011.MATHCrossRefGoogle Scholar
  25. 25.
    West, B.J., Bologna, M., and Grigolini, P., Physics of Fractal Operators, New York: Springer, 2003.CrossRefGoogle Scholar
  26. 26.
    Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity, London: Imperial College Press, 2010.MATHCrossRefGoogle Scholar
  27. 27.
    Babenko, Yu.I., Metod drobnogo differentsirovaniya v prikladnykh zadachakh teorii teplomassoobmena (Method of Fractional Differentiation in the Applied Problems of the Theory of Heat-Mass Exchange), St. Petersburg: NPO “Professional,” 2009.Google Scholar
  28. 28.
    Caponetto, R., Dongola, G., Fortuna, L., and Petras, I., Fractional Order Systems. Modeling and Control Applications, Singapore: World Scientific, 2010.Google Scholar
  29. 29.
    Advances in Fractional Calculus, Sabatier, J., Agrawal, O.P., and Machado, J.A.T., Eds., Dordrecht: Springer, 2007.MATHGoogle Scholar
  30. 30.
    New Trends in Nanotechnology and Fractional Calculus Applications, Baleanu, D., Güvenc, Z.B., and Machado, J.A.T., Eds., Dordrecht: Springer, 2010.MATHGoogle Scholar
  31. 31.
    Applications of Fractional Calculus in Physics, Hilfer, R., Ed., Singapore: World Scientific, 2000.MATHGoogle Scholar
  32. 32.
    Mathematical Methods in Engineering, Tas, K., Machado, J.A.T., and Baleanu, D., Eds., Dordrecht: Springer, 2007.MATHGoogle Scholar
  33. 33.
  34. 34.
  35. 35.
  36. 36.
    Sonin, N.Ya., On Differentiation with Arbitrary Indicator, Mat. Sb., 1872, vol. 6, no. 1, pp. 1–38.Google Scholar
  37. 37.
    Letnikov, A.V., On Explanation of the Main Propositions of the Differentiation Theory with Arbitrary Indicator, Mat. Sb., 1872, vol. 6, no. 1, pp. 413–445.Google Scholar
  38. 38.
    Erdelyi, A. and Kober, H., Some Remarks on Hankel Transforms, Quart. J. Math. Oxford, 1940, ser. 11, no. 43, pp. 212–221.Google Scholar
  39. 39.
    Cossar, J., A Theorem on Cesaro Summability, J. London Math. Soc., 1941, vol. 16, pp. 56–68.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Samko, S.G. and Yakhshiboev, M.N., On OneModification of the Fractional Riemann-Liouville Integro-Differentiation as Applied to the R 1 Functions of any Behavior on Infinity, Izv. Vyssh. Uchebn. Zaved., Mat., 1992, no. 4, pp. 96–99.Google Scholar
  41. 41.
    Geisberg, S.P., Fractional Derivatives of the Axis-bounded Functions, Izv. Vyssh. Uchebn. Zaved., Mat., 1968, no. 11(78), pp. 51–69.Google Scholar
  42. 42.
    Letnikov, A.V., Theory of Differentiation with Arbitrary Indicator, Mat. Sb., 1868, vol. 3, pp. 1–68.Google Scholar
  43. 43.
    Letnikov, A.V., Studies of the Theory of Issledovaniya, ∫ax (xu)p−1 f(u) Integrals, Mat. Sb., 1874, vol. 7, no. 1, pp. 5–205.Google Scholar
  44. 44.
    Post, E.L., Generalized Differentiation, Trans. Am. Math. Soc., 1930, vol. 32, no. 4, pp. 723–781.MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Saigo, M., A Remark on Integral Operators Involving the Gauss Hypergeometric Functions, Math. Rep. Kyushu Univ., 1987, vol. 11, no. 2, pp. 135–143.MathSciNetGoogle Scholar
  46. 46.
    Shuvalova, T.V., Some Compositional Properties of the Generalized Operators of Fractional Differentiation, Vestn. Sam. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2006, no. 42, pp. 45–48.Google Scholar
  47. 47.
    Hadamar, J., Essai sur l’étude des fonctions données par leur dévelopment de Taylor, J. Math. Pures Appl., 1892, vol. 8, no. 4, pp. 101–186.Google Scholar
  48. 48.
    Churikov, V.A., Fractional Analyisis Based on the Hadamard Operator, Izv. Tomsk. Politekh. Univ., 2008, vol. 312, no. 2, pp. 16–20.Google Scholar
  49. 49.
    Churikov, V.A., Fractional Analysis of the Order 1/2 Based on the Hadamard Approach, Izv. Tomsk. Politekh. Univ., 2008, vol. 312, no. 2, pp. 21–23.Google Scholar
  50. 50.
    Churikov, V.A., Program and Principles of Constructing Fractional Analysos, Izv. Tomsk. Politekh. Univ., 2009, vol. 314, no. 2, pp. 9–12.MathSciNetGoogle Scholar
  51. 51.
    Churikov, V.A., Internal Algebra of the Operators of Fractional Integro-Differentiation, Izv. Tomsk. Politekh. Univ., 2009, vol. 314, no. 2, pp. 12–15.MathSciNetGoogle Scholar
  52. 52.
    Dzhrbashyan, M.M., Generalized Riemann-Liouville Operator and Some Its Applications, Dokl. Akad. Nauk SSSR, 1967, vol. 177, no. 4, pp. 767–770.MathSciNetGoogle Scholar
  53. 53.
    Dzhrbashyan, M.M., Generalized Riemann-Liouville Operator and Some Its Applications, Izv. Akad. Nauk SSSR, Mat., 1968, vol. 32, no. 5, pp. 1075–1111.MATHGoogle Scholar
  54. 54.
    Zavada, P., Operator of Fractional Derivative in the Complex Plane, Commun. Math. Phys., 1998, vol. 192, pp. 261–285.MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Ortigueira, M.D., A Coherent Approach to Non-Integer Order Derivatives, Signal Proc., 2006, vol. 86, pp. 2505–2515.MATHCrossRefGoogle Scholar
  56. 56.
    Li, C.P., Dao, X.H., and Guo, P., Fractional Derivatives in Complex Planes, Nonlin. Anal., 2009, vol. 71, pp. 1857–1869.MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Magin, R., Ortigueira, M.D., Podlubny, I., and Trujillo, J., On the Fractional Signals and Systems, Signal Proc., 2011, vol. 91, pp. 350–371.MATHCrossRefGoogle Scholar
  58. 58.
    Gutierrez, R.E., Rosario, J.M., and Machado, J.T., Fractional Order Calculus: Basic Concepts and Engineering Applications, Math. Probl. Eng., 2010, vol. 2010 (article ID 375858).Google Scholar
  59. 59.
    Cottrill-Stepherd, K. and Naber, M., Fractional Differential Forms, J. Math. Phys., 2001, vol. 42, no. 5, pp. 2203–2212.MathSciNetCrossRefGoogle Scholar
  60. 60.
    Cottrill-Stepherd, K. and Naber, M., Fractional Differential Forms II, arXiv: math-ph/0301016.Google Scholar
  61. 61.
    Chen, Y., Yan, Z., and Zhang, H., Applications of Fractional Exterior Differential in Three-Dimensional Space, Appl. Math. Mech., 2003, vol. 24, no. 3, pp. 256–260.MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Kazbekov, K.K., Fractional Differential Forms in the Euclidean Space, Vladikavkaz. Mat. Zh., 2005, vol. 7, no. 2, pp. 41–54.MathSciNetGoogle Scholar
  63. 63.
    Lavoie, J.L., Osler, T.J., and Tremblay, R., Fractional Derivatives and Special Functions, SIAM Rev., 1976, vol. 18, no. 2, pp. 240–268.MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    Kiryakova, V., The Multi-index Mittag-Leffler Functions as an Important Class of Special Functions of Fractional Calculus, Comput. Math. Appl., 2010, vol. 59, pp. 1885–1895.MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Kiryakova, V., The Special Functions of Fractional Calculus as Generalized Fractional Calculus Operators of Some Basic Functions, Comput. Math. Appl., 2010, vol. 59, pp. 1128–1141.MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Haubold, H.J., Mathai, A.M., and Saxena, R.K., Mittag-Leffler Functions and Their Applications, J. Appl. Math., 2011, vol. 2011 (article ID 298628).Google Scholar
  67. 67.
    Stojanovic, M., Fractional Derivatives in Spaces of Generalized Functions, Frac. Calc. Appl. Anal., 2011, vol. 14, no. 1, pp. 125–137.MathSciNetGoogle Scholar
  68. 68.
    Tarasov, V.E., Fractional Derivative as Fractional Power of Derivative, Int. J. Math., 2007, vol. 18, no. 3, pp. 281–299.MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Tarasov, V.E., Fractional Powers of Derivatives in Classical Mechanics, Commun. Appl. Anal., 2008, vol. 12, no. 4, pp. 441–450.MathSciNetMATHGoogle Scholar
  70. 70.
    Tavazoei, M.S., A Note on Fractional-Order Derivatives of Periodic Functions, Automatica, 2010, vol. 46, pp. 945–948.MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    Tavazoei, M.S. and Haeri, M., A Proof for Non-Existence of Periodic Solutions in Time Invariant Fractional-Order Systems, Automatica, 2009, vol. 45, pp. 1886–1890.MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Yazdani, M. and Salarieh, H., On the Existence of Periodic Solutions in Time-Invariant Fractional-Order Systems, Automatica, 2011, vol. 47, pp. 1834–1837.MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Jumarie, G., Modified Riemann-Liouville Derivative and Fractional Taylor Series of Nondifferentiable Functions Further Results, Comput. Math. Appl., 2006, vol. 51, pp. 1367–1376.MathSciNetMATHCrossRefGoogle Scholar
  74. 74.
    Jumarie, G., Table of Some Basic Fractional Calculus Formulae Derived from a Modified Riemann-Liouville Derivative for Non-Differentiable Functions, Appl. Math. Lett., 2009, vol. 22, pp. 378–385.MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Li, C.P. and Deng, W.H., Remarks on Fractional Derivatives, Appl. Math. Comput., 2007, vol. 187, no. 2, pp. 777–784.MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Li, C.P., Qian, D., and Chen, Y.Q., On Riemann-Liouville and Caputo Derivatives, Discrete Dyn. Nat. Soc., 2011, vol. 2011 (article ID 562494).Google Scholar
  77. 77.
    Luchko, Y., Maximum Principle and Its Application for the Time-Fractional Diffusion Equations, Frac. Calc. Appl. Anal., 2011, vol. 14, no. 1, pp. 110–124.MathSciNetGoogle Scholar
  78. 78.
    Katugampola, U.N., New Approach to a Generalized Fractional Integral, Appl. Math. Comput., 2011, vol. 218, pp. 860–865.MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Samko, S.G., Fractional Integration and Differentiation of Variable Order, Anal. Math., 1995, vol. 21, pp. 213–236.MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    Lorenzo, C.F. and Hartley, T.T., Variable Order and Distributed Order Fractional Operators, Nonlin. Dyn., 2002, vol. 29, pp. 57–98.MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Valerio, D. and da Costa, J.S., Variable-Order Fractional Derivatives and Their Numerical Aproximations, Signal Proc., 2011, vol. 91, pp. 470–483.MATHCrossRefGoogle Scholar
  82. 82.
    Sun, H., Chen, Y., and Chen, W., Time Fractional Differential EquationModel with Random Derivative Order, in Proc. ASME Int. Design Engin. Technical Conf. & Computers and Inform. in Engin. Conf. IDETC/CIE 2009, San Diego, 2009 (paper ID DETC2009-87483).Google Scholar
  83. 83.
    Al-Salam, W.A. and Verma, A., A Fractional Leibniz q-Formula, Pac. J. Math., 1975, vol. 60, pp. 1–9.MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    Al-Salam, W.A., Some Fractional q-Integrals and q-Derivatives, Proc. Edin. Math. Soc., 1969, vol. 15, pp. 135–140.MathSciNetCrossRefGoogle Scholar
  85. 85.
    Agrawal, R.P., Certain Fractional q-Integrals and q-Derivatives, Proc. Camb. Phil. Soc., 1969, vol. 66, pp. 365–70.CrossRefGoogle Scholar
  86. 86.
    Predrag, M.R., Sladana, D.M., and Miomir, S.S., Fractional Integrals and Derivatives in q-calculus, Appl. Anal. Discrete Math., 2007, vol. 1, pp. 311–323.MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Atici, F.M. and Eloe, P.W., A Transform Method in Discrete Fractional Calculus, Int. J. Differ. Equat., 2007, vol. 2, no. 2, pp. 165–176.MathSciNetGoogle Scholar
  88. 88.
    Atici, F.M. and Eloe, P.W., Initial Value Problems in Discrete Fractional Calculus, Proc. Am. Math. Soc., 2009, vol. 137, pp. 981–989.MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Atici, F.M. and Eloe, P.W., Fractional q-Calculus on a Time Scale, J. Nonlin. Math. Phys., 2007, vol. 14, no. 3, pp. 341–352.MathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    Holm, M.T., The Laplace Transform in Discrete Fractional Calculus, Comput. Math. Appl., 2011, vol. 62, pp. 1591–1601.MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Abdeljawad, T. and Baleanu, D., Fractional Differences and Integration by Parts, J. Comput. Anal. Appl., 2011, vol. 13, no. 3, pp. 574–582.MathSciNetMATHGoogle Scholar
  92. 92.
    Abdeljawad, T. and Baleanu, D., Caputo q-Fractional Initial Value Problems and a q-Analogue Mittag-Leffler Function, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 4682–4688.MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Abdeljawad, T., On Riemann and Caputo Fractional Differences, Comput. Math. Appl., 2011, vol. 62, pp. 1602–1611.MathSciNetMATHCrossRefGoogle Scholar
  94. 94.
    Miyakoda, T., Direct Discretization of the Fractional-order Differential by Using Chebyshev Series Expansion, Proc. Appl. Math. Mech., 2007, vol. 7, pp. 2020011–2020012.CrossRefGoogle Scholar
  95. 95.
    Zwillinger, D., Handbook of Differential Equations, New York: Academic, 1997.Google Scholar
  96. 96.
    Ahmad, B. and Sivasundaram, S., Existence of Solutions for Impulsive Integral Boundary Value Problems of Fractional Order, Nonlin. Anal.: Hybrid Syst., 2010, vol. 4, pp. 134–141.MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Ahmad, B., Existence of Solutions for Irregular Boundary Value Problems of Nonlinear Fractional Differential Equations, Appl. Math. Lett., 2010, vol. 23, pp. 390–394.MathSciNetMATHCrossRefGoogle Scholar
  98. 98.
    Ahmad, B. and Nieto, J.J., Existence of Solutions for Nonlocal Boundary Value Problems of Higher-Order Nonlinear Fractional Differential Equations, Abstr. Appl. Anal., 2009, vol. 2009 (article ID 494720).Google Scholar
  99. 99.
    Ahmad, B., Existence Results for Multi-Point Nonlinear Boundary Value Problems for Fractional Differential Equations, Memoirs Diff. Eq. Math. Phys., 2010, vol. 49, pp. 83–94.MATHGoogle Scholar
  100. 100.
    Allison, J. and Kosmatov, N., Multi-Point Boundary Value Problems of Fractional Order, Commun. Appl. Anal., 2008, vol. 12, no. 4, pp. 451–458.MathSciNetMATHGoogle Scholar
  101. 101.
    Deng, J. and Ma, L., Existence and Uniqueness of Solutions of Initial Value Problems for Nonlinear Fractional Differential Equations, Appl. Math. Lett., 2010, vol. 23, pp. 676–680.MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    Devi, J.V. and Lakshmikantham, V., Nonsmooth Analysis and Fractional Differential Equations, Nonlin. Anal., 2009, vol. 70, pp. 4151–4157.MATHCrossRefGoogle Scholar
  103. 103.
    El-Shahed, M. and Nieto, J.J., Nontrivial Solutions for a Nonlinear Multi-point Boundary Value Problem of Fractional Order, Comput. Math. Appl., 2010, vol. 59, pp. 3438–3443.MathSciNetMATHCrossRefGoogle Scholar
  104. 104.
    Kosmatov, N., Integral Equations and Initial Value Problems for Nonlinear Differential Equations of Fractional Order, Nonlin. Anal., 2009, vol. 70, pp. 2521–2529.MathSciNetMATHCrossRefGoogle Scholar
  105. 105.
    Mophou, G.M., Existence and Uniqueness of Mild Solutions to Impulsive Fractional Differential Equations, Nonlin. Anal., 2010, vol. 72, pp. 1604–1615.MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Odibat, Z.M., Analytic Study on Linear Systems of Fractional Differential Equations, Comput. Math. Appl., 2010, vol. 59, pp. 1171–1183.MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Zhou, Y. and Jiao, F., Nonlocal Cauchy Problem for Fractional Evolution Equations, Nonlin. Anal.: Real World Appl., 2011, vol. 11, pp. 4465–4475.MathSciNetCrossRefGoogle Scholar
  108. 108.
    Agarwal, R.P., Benchohra, M., and Hamani, S., A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions, Acta Appl. Math., 2010, vol. 109, pp. 973–1033.MathSciNetMATHCrossRefGoogle Scholar
  109. 109.
    Xiao, F., Nonlocal Cauchy Problem for Nonautonomous Fractional Evolution Equations, Adv. Diff. Eq., 2011, vol. 2011 (article ID 483816).Google Scholar
  110. 110.
    Cichon, M. and Salem, H.A.H., Set-Valued System of Fractional Differential Equations with Hysteresis, Appl. Math. Comput., 2010, vol. 215, pp. 3824–3829.MathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    Agarwal, R.P., Belmekki, M., and Benchohra, M., A Survey on Semilinear Differential Equations and Inclusions Involving Riemann-Liouville Fractional Derivative, Adv. Diff. Eq., 2009, vol. 2009 (article ID 981728).Google Scholar
  112. 112.
    Salem, H.A.H., On the Fractional Calculus in Abstract Spaces and Their Applications to the Dirichlet-Type Problem of Fractional Order, Comput. Math. Appl., 2010, vol. 59, pp. 1278–1293.MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Stojanović, M., Existence-Uniqueness Result for a Nonlinear n-Term Fractional Equation, J. Math. Anal. Appl., 2009, vol. 353, pp. 244–255.MathSciNetMATHCrossRefGoogle Scholar
  114. 114.
    Tatar, N., The Existence of Mild and Classical Solutions for a Second-Order Abstract Fractional Problem, Nonlin. Anal., 2010, vol. 73, pp. 3130–3139.MathSciNetMATHCrossRefGoogle Scholar
  115. 115.
    Ogorodnikov, E.N. and Yashagin, N.S., Formulation and Solution of the Cauchy-type Problems for the Second-order Differential Equations with Fractional Riemann-Liouville Derivatives, Vestn. Sam. Gos. Tekh. Univ., Ser. Phiz.-Mat. Nauki, 2010, no. 1(20), pp. 24–36.Google Scholar
  116. 116.
    Feng, W., Sun, S., Han, Z., and Zhao, Y., Existence of Solutions for a Singular System of Nonlinear Fractional Differential Equations, Comput. Math. Appl., 2011, vol. 62, pp. 1370–1378.MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Kou, C., Zhou, H., and Ye, Y., Existence of Solutions of Initial Value Problems for Nonlinear Fractional Differential Equations on the Half-Axis, Nonlin. Anal., 2011, vol. 74, pp. 5975–5986.MATHCrossRefGoogle Scholar
  118. 118.
    Saadatmandi, A. and Dehghan, M., A New OperationalMatrix for Solving Fractional-Order Differential Equations, Comput. Math. Appl., 2010, vol. 59, pp. 1326–1336.MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    Bhrawy, A.H., Alofib, A.S., and Ezz-Eldienb, S.S., A Quadrature Tau Method for Fractional Differential Equations with Variable Coefficients, Appl. Math. Lett., 2011, vol. 24, pp. 2146–2152.MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    Saeedi, H., Moghadam, M.M., Mollahasani, N., and Chuev, G.N., A CAS Wavelet Method for Solving Nonlinear Fredholm Integro-Differential Equations of Fractional Order, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 1154–1163.MATHCrossRefGoogle Scholar
  121. 121.
    Li, Y., Solving a Nonlinear Fractional Differential Equation Using Chebyshev Wavelets, Commun. Nonlin. Sci. Numer. Simulat., 2010, vol. 15, pp. 2284–2292.MATHCrossRefGoogle Scholar
  122. 122.
    Rehman, M. and Khan, R.A., The Legendre Wavelet Method for Solving Fractional Differential Equations, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 4163–4173.MATHCrossRefGoogle Scholar
  123. 123.
    Lakestani, M., Dehghan, M., Irandoust-pakchin, S., The Construction of Operational Matrix of Fractional Derivatives Using B-spline Functions, Commun. Nonlin. Sci. Numer. Simulat., 2012, vol. 17, pp. 1149–1162.MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Lizama, S., An Operator Theoretical Approach to a Class of Fractional Order Differential Equations, Appl. Math. Lett., 2011, vol. 24, pp. 184–190.MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    Li, K. and Peng, J., Laplace Transform and Fractional Differential Equations, Appl. Math. Lett., 2011, vol. 24, pp. 2019–2023.MathSciNetMATHCrossRefGoogle Scholar
  126. 126.
    Jafari, H. and Seifi, S., Solving a System of Nonlinear Fractional Partial Differential Equations Using Homotopy Analysis Method, Commun. Nonlin. Sci. Numer. Simulat., 2009, vol. 14, no. 5, pp. 1962–1969.MathSciNetMATHCrossRefGoogle Scholar
  127. 127.
    Zhang, X., Tang, B., and He, Y., Homotopy Analysis Method for Higher-Order Fractional Integro-Differential Equations, Comput. Math. Appl., 2011, vol. 62, pp. 3194–3203.MathSciNetMATHCrossRefGoogle Scholar
  128. 128.
    Ghazanfari, B. and Veisi, F., Homotopy Analysis Method for the Fractional Nonlinear Equations, J. King Saud Univ. Sci., 2011, vol. 23, pp. 389–393.CrossRefGoogle Scholar
  129. 129.
    Das, S., Analytical Solution of a Fractional Diffusion Equation by Variational Iteration Method, Comput. Math. Appl., 2009, vol. 57, no. 3, pp. 483–487.MathSciNetMATHCrossRefGoogle Scholar
  130. 130.
    Jafari, H. and Tajadodi, H., He’s Variational IterationMethod for Solving Fractional Riccati Differential Equation, Int. J. Diff. Eq., 2010, vol. 2010 (article ID 764738).Google Scholar
  131. 131.
    Faraz, N., Khan, Y., Jafari, H., Yildirim, A., and Madanim, M., Fractional Variational IterationMethod via Modified Riemann-Liouville Derivative, J. King Saud Univ. Sci., 2011, vol. 23, pp. 413–417.CrossRefGoogle Scholar
  132. 132.
    Adomian, G., A Review of the Decomposition Method in Applied Mathematics, J. Math. Anal. Appl., 1988, vol. 135, pp. 501–544.MathSciNetMATHCrossRefGoogle Scholar
  133. 133.
    Adomian, G., Solution of Physical Problems by Decomposition, Comput. Math. Appl., 1994, vol. 27, no. 9/10, pp. 145–154.MathSciNetMATHCrossRefGoogle Scholar
  134. 134.
    Arora, H.L. and Abdelwahid, F.I., Solutions of Non-Integer Order Differential Equations via the Adomian Decomposition Method, Appl. Math. Lett., 1993, vol. 6, pp. 21–23.MathSciNetMATHCrossRefGoogle Scholar
  135. 135.
    Daftardar-Gejji, V. and Jafari, H., Solving a Multi-Order Fractional Differential Equation Using Adomian Decomposition, Appl. Math. Comput., 2007, vol. 189, pp. 541–548.MathSciNetMATHCrossRefGoogle Scholar
  136. 136.
    Jafari, H. and Daftardar-Gejji, V., Solving a System of Nonlinear Fractional Differential Equations Using Adomian Decomposition, J. Comput. Appl. Math., 2006, vol. 196, pp. 644–651.MathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    Khan, Y. and Faraz, N., Modified Fractional Decomposition Method Having Integral w.r.t dξα, J. King Saud Univ. Sci., 2011, vol. 23, pp. 157–161.CrossRefGoogle Scholar
  138. 138.
    Huang, L., Li, X.-F., Zhao, Y., and Duan, X.-Y., Approximate Solution of Fractional Integro-Differential Equations by Taylor ExpansionMethod, Comput. Math. Appl., 2011, vol. 62, pp. 1127–1134.MathSciNetMATHCrossRefGoogle Scholar
  139. 139.
    Rida, S.Z. and Arafa, A.A.M., New Method for Solving Linear Fractional Differential Equations, Int. J. Diff. Eq., 2001, vol. 2011 (article ID 814132).Google Scholar
  140. 140.
    Jia, M., Monotone Iterative Technique for Fractional Evolution Equations in Banach Spaces, J. Appl. Math., 2011, vol. 2011 (article ID 767186).Google Scholar
  141. 141.
    Băleanu, D., Mustafa, O.G., and Agarwal, R.P., Asymptotic Integration of (1 + α)-order Fractional Differential Equations, Comput. Math. Appl., 2011, vol. 62, pp. 1492–1500.MathSciNetMATHCrossRefGoogle Scholar
  142. 142.
    Lakshmikantham, V., Theory of Fractional Functional Differential Equations, Nonlin. Anal., 2008, vol. 69, pp. 3337–3343.MathSciNetMATHCrossRefGoogle Scholar
  143. 143.
    Ahmad, B. and Sivasundaram, S., Some Basic Results for Fractional Functional Integro-Differential Equations, Commun. Appl. Anal., 2008, vol. 12, no. 4, pp. 467–478.MathSciNetMATHGoogle Scholar
  144. 144.
    dos Santos, J.P.C., Cuevas, C., and de Andrade, B., Existence Results for a Fractional Equation with State-Dependent Delay, Adv. Diff. Eq., 2011, vol. 2011 (article ID 642013).Google Scholar
  145. 145.
    Agarwal, R.P., Zhou, Y., Wang, J.-R., and Luo, X., Fractional Functional Differential Equations with Causal Operators in Banach Spaces, Math. Comput. Modelling, 2011, vol. 54, pp. 1440–1452.MathSciNetMATHCrossRefGoogle Scholar
  146. 146.
    Wei, X.T. and Lu, X.Z., The Periodic Solutions of the Compound Singular Fractional Differential System with Delay, Int. J. Diff. Eq., 2010, vol. 2010 (article ID 509286).Google Scholar
  147. 147.
    Cernea, A., On a Nonlinear Fractional Order Differential Inclusion, Electron. J. Qual. Theory Diff. Eq., 2010, no. 78, pp. 1–13, http://www.math.u-szeged.hu/ejqtde/.Google Scholar
  148. 148.
    Cernea, A., Continuous Version of Filippov’s Theorem for Fractional Differential Inclusions, Nonlin. Anal., 2010, vol. 72, pp. 204–208.MathSciNetMATHCrossRefGoogle Scholar
  149. 149.
    Vityuk, A.N., Existence of Solutions of Differential Inclusions with Partial Derivatives of Fractional Orders, Izv. Vyssh. Uchebn. Zaved., Mat., 1997, no. 8(423), pp. 13–19.Google Scholar
  150. 150.
    Vityuk, A.N., Differential Equations of Fractional Order with Multivalues Solutions, Visnik Odes’k. Derzh. Univ., Fiz.-Mat. Nauki, 2003, vol. 8, no. 2, pp. 108–112.MATHGoogle Scholar
  151. 151.
    Ouahab, A., Some Results for Fractional Boundary Value Problem of Differential Inclusions, Nonlin. Anal., 2008, vol. 69, pp. 3877–3896.MathSciNetMATHCrossRefGoogle Scholar
  152. 152.
    Ibrahim, R.W., Existence of Convex and Nonconvex Local Solutions for Fractional Differential Inclusions, Electron. J. Diff. Eq., 2009, vol. 2009, no. 18, pp. 1–13, http://ejde.math.txstate.edu.Google Scholar
  153. 153.
    Cernea, A., Some Remarks on a Fractional Differential Inclusion with Non-Separated Boundary Conditions, Electron. J. Qual. Theory Diff. Eq., 2011, no. 45, pp. 1–14, http://www.math.u-szeged.hu/ejqtde/.Google Scholar
  154. 154.
    Henderson, J. and Ouahab, A., Impulsive Differential Inclusions with Fractional Order, Comput. Math. Appl., 2010, vol. 59, pp. 1191–1226.MathSciNetMATHCrossRefGoogle Scholar
  155. 155.
    Hamani, S., Benchohra, M., and Graef, J.R., Existence Results for Boundary-Value Problems with Nonlinear Fractional Differential Inclusions and Integral Conditions, Electron. J. Diff. Eq., 2010, vol. 2010, no. 20, pp. 1–16, http://ejde.math.txstate.edu.MathSciNetGoogle Scholar
  156. 156.
    Yang, D., Existence of Solutions for Fractional Differential Inclusions with Boundary Conditions, Electron. J. Diff. Eq., 2010, vol. 2010, no. 92, pp. 1–10, http://ejde.math.txstate.edu.Google Scholar
  157. 157.
    Girejko, E., Mozyrska, D., and Wyrwas, M., A Sufficient Condition of Viability for Fractional Differential Equations with the Caputo Derivative, J. Math. Anal. Appl., 2011, vol. 381, pp. 146–154.MathSciNetMATHCrossRefGoogle Scholar
  158. 158.
    Henderson, J. and Ouahab, A., Fractional Functional Differential Inclusions with Finite Delay, Nonlin. Anal., 2009, vol. 70, pp. 2091–2105.MathSciNetMATHCrossRefGoogle Scholar
  159. 159.
    Darwish, M.A. and Ntouyas, S.K., On Initial and Boundary Value Problems for Fractional Order Mixed Type Functional Differential Inclusions, Comput. Math. Appl., 2010, vol. 59, pp. 1253–1265.MathSciNetMATHCrossRefGoogle Scholar
  160. 160.
    Hartley, T.T. and Lorenzo, C.F., Dynamics and Control of Initialized Fractional-Order Systems, Nonlin. Dyn., 2002, vol. 29, no. 1–4, pp. 201–233.MathSciNetMATHCrossRefGoogle Scholar
  161. 161.
    Heymans, N. and Podlubny, I., Physical Interpretation of Initial Conditions for Fractional Differential Equations with Riemann-Liouville Fractional Derivatives, Rheol. Acta., 2006, vol. 45, pp. 765–771.CrossRefGoogle Scholar
  162. 162.
    Ortigueira, M.D., On the Initial Conditions in Continuous-Time Fractional Linear Systems, Signal Proc., 2003, vol. 83, pp. 2301–2309.MATHCrossRefGoogle Scholar
  163. 163.
    Sabatier, J., Merveillaut, M., Malti, R., and Oustaloup, A., How to Impose Physically Coherent Initial Conditions to a Fractional System?, Commun. Nonlin. Sci. Numer. Simulat., 2010, vol. 15, pp. 1318–1326.MathSciNetMATHCrossRefGoogle Scholar
  164. 164.
    Trigeassou, J.C. and Maamri, N., Initial Conditions and Initialization of Linear Fractional Differential Equations, Signal Proc., 2011, vol. 91, pp. 427–436.MATHCrossRefGoogle Scholar
  165. 165.
    Rutman, R.S., On Physical Interpretations of Fractional Integration and Differentiation, Teor. Mat. Fiz., 1995, vol. 105, no. 3, pp. 393–404.MathSciNetMATHCrossRefGoogle Scholar
  166. 166.
    Chadaev, V.A., The Local-Nonlocal Formulation of the Cauchy Problem for the Nonlinear Fractionalorder Equation in a Certain Class, Vestn. Sam. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), pp. 214–217.Google Scholar
  167. 167.
    Ogorodnikov, E.N., Some Aspects of the Theory of Initial Problems for the Differential Equations with Riemann-Liouville Derivatives, Vestn. Sam. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), pp. 10–23.Google Scholar
  168. 168.
    Mansouri, R., Bettayeb, M., and Djennoune, S., Multivariable Fractional System Approximation with Initial Conditions Using Integral State Space Representation, Comput. Math. Appl., 2010, vol. 59, pp. 1842–1851.MathSciNetMATHCrossRefGoogle Scholar
  169. 169.
    Mansouri, R., Bettayeb, M., Djennoune, S., Comparison Between Two Approximation Methods of State Space Fractional Systems, Signal Proc., 2011, vol. 91, pp. 461–469.MATHCrossRefGoogle Scholar
  170. 170.
    Riewe, F., Mechanics with Fractional Derivatives, Phys. Rev. E, 1997, vol. 55, no. 3, pp. 3581–3592.MathSciNetCrossRefGoogle Scholar
  171. 171.
    Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I., and Baleanu, D., The Hamilton Formalism with Fractional Derivatives, J. Math. Anal. Appl., 2007, vol. 327, pp. 891–897.MathSciNetMATHCrossRefGoogle Scholar
  172. 172.
    Jumarie, G., Lagrangian Mechanics of Fractional Order, Hamilton-Jacobi Fractional PDE and Taylor’s Series of Non-Differentiable Functions, Chaos, Solitons Fractals, 2007, vol. 32, pp. 969–987.MathSciNetMATHCrossRefGoogle Scholar
  173. 173.
    Cresson, J. and Inizan, P., Variational Formulations of Differential Equations and Asymmetric Fractional Embedding, J. Math. Anal. Appl., 2012, vol. 385, pp. 975–997.MathSciNetMATHCrossRefGoogle Scholar
  174. 174.
    Agrawal, O.P., Formulation of Euler-Lagrange Equations for Fractional Variational Problems, J. Math. Anal. Appl., 2002, vol. 272, pp. 368–379.MathSciNetMATHCrossRefGoogle Scholar
  175. 175.
    Almeida, R. and Torres, D.F.M., Calculus of Variations with Fractional Derivatives and Fractional Integrals, Appl. Math. Lett., 2009, vol. 22, pp. 1816–1820 (arXiv: 0907.1024v1).MathSciNetMATHCrossRefGoogle Scholar
  176. 176.
    Atanackovis, T.M., Konjik, S., Pilipović, S., and Simić, S., Variational Problems with Fractional Derivatives: Invariance Conditions and Nöther’s Theorem, Nonlin. Anal., 2009, vol. 71, pp. 1504–1517.CrossRefGoogle Scholar
  177. 177.
    Almeida, R., Fractional Variational Problems with the Riesz-Caputo Derivative, Appl. Math. Lett., 2012, vol. 25, pp. 142–148.MathSciNetMATHCrossRefGoogle Scholar
  178. 178.
    Baleanu, D. and Trujillo, J.I., A New Method of Finding the Fractional Euler-Lagrange and Hamilton Equations within Caputo Fractional Derivatives, Commun. Nonlin. Sci. Numer. Simul., 2010, vol. 15, pp. 1111–1115.MathSciNetMATHCrossRefGoogle Scholar
  179. 179.
    Jarad, F., Abdeljabad, T., and Baleanu, D., Fractional Variational Principles with Delay within Caputo Derivatives, Rep. Math. Phys., 2010, vol. 65, no. 1, pp. 17–28.MathSciNetMATHCrossRefGoogle Scholar
  180. 180.
    Almeida, R. and Torres, D.F.M., Necessary and Sufficient Conditions for the Fractional Calculus of Variations with Caputo Derivatives, Commun. Nonlin. Sci. Numer. Simul., 2011, vol. 16, pp. 1490–1500 (arXiv:1007.2937v1).MathSciNetMATHCrossRefGoogle Scholar
  181. 181.
    Malinowska, A.B. and Torres, D.F.M., Generalized Natural Boundary Conditions for Fractional Variational Problems in Terms of the Caputo Derivative, Comput. Math. Appl., 2010, vol. 59, pp. 3110–3116.MathSciNetMATHCrossRefGoogle Scholar
  182. 182.
    Frederico, G.S.F. and Torres, D.F.M., A Formulation of Noether’s Theorem for Fractional Problems of the Calculus of Variations, J. Math. Anal. Appl., 2007, vol. 334, pp. 834–846.MathSciNetMATHCrossRefGoogle Scholar
  183. 183.
    Frederico, G.S.F. and Torres, D.F.M., Fractional Conservation Laws in Optimal Control Theory, Nonlin. Dyn., 2008, vol. 53, pp. 215–222.MathSciNetMATHCrossRefGoogle Scholar
  184. 184.
    Frederico, G.S.F. and Torres, D.F.M., Fractional Noether’s Theorem in the Riesz-Caputo Sense, Appl. Math. Comput., 2010, vol. 217, pp. 1023–1033.MathSciNetMATHCrossRefGoogle Scholar
  185. 185.
    Frederico, G.S.F. and Torres, D.F.M., Fractional Optimal Control in the Sense of Caputo and the Fractional Noether’s Theorem, Int. Math. Forum, 2008, vol. 3, no. 10, pp. 479–493.MathSciNetMATHGoogle Scholar
  186. 186.
    Baleanu, D., Mihaela-Baleanu, C., Golmankhaneh, A.K., and Golmankhaneh, A.K., The Fractional Virial Theorem, Frac. Diff. Eq., 2011, vol. 1, no. 1, pp. 89–97.MathSciNetGoogle Scholar
  187. 187.
    Agrawal, O.P., Fractional Variational Calculus and the Transversality Conditions, J. Phys. A: Math. Gen., 2006, vol. 39, pp. 10375–10384.MATHCrossRefGoogle Scholar
  188. 188.
    Tomovski, Z., Hilfer, R., and Srivastava, H.M., Fractional and Operational Calculus with Generalized Fractional Derivative Operators and Mittag-Leffler Type Functions, Integral. Transf. Spec. Funct., 2010, vol. 21, no. 11, pp. 797–814.MathSciNetMATHCrossRefGoogle Scholar
  189. 189.
    Agrawal, O.P., Muslih, S.I., and Baleanu, D., Generalized Variational Calculus in Terms of Multi-Parameters Fractional Derivatives, Commun. Nonlin. Sci. Numer. Simulat., 2011, vol. 16, pp. 4756–4767.MathSciNetMATHCrossRefGoogle Scholar
  190. 190.
    Bastos, N.R.O., Ferreira, R.A.C., and Torres, D.F.M., Discrete-Time Fractional Variational Problems, Signal Proc., 2011, vol. 91, pp. 513–524.MATHCrossRefGoogle Scholar
  191. 191.
    Wang, D. and Xiao, A., Fractional Variational Integrators for Fractional Variational Problems, Commun. Nonlin. Sci. Numer. Simulat., 2002, vol. 17, pp. 602–610.MathSciNetCrossRefGoogle Scholar
  192. 192.
    Podlubny, I., Geometrical and Physical Interpretation of Fractional Integration and Fractional Differentiation, Frac. Calc. Appl. Anal., 2002, vol. 5, no. 4, pp. 367–386 (arXiv: math/0110241v1).MathSciNetMATHGoogle Scholar
  193. 193.
    Podlubny, I., Despotovic, V., Skovranek, T., and McNaughton, B.H., Shadows on the Walls: Geometric Interpretation of Fractional Integration, J. Online Math. Its Appl., 2007, vol. 7 (article ID 1664), http://www.maa.org/joma/Volume7/Podlubny/GIFI.html.
  194. 194.
    Nizami, S.T., Khan, N., and Khan, F.H., A New Approach to Represent the Geometric and Physical Interpretation of Fractional Order Derivatives of Polynomial Function and Its Application in Field of Sciences, Can. J. Comp. Math., Nat. Sci., Eng. Med., 2010, vol. 1, no. 1, pp. 1–8.Google Scholar
  195. 195.
    Ben Adda, F., Geometric Interpretation of the Fractional Derivative, J. Frac. Calc., 1997, vol. 11, pp. 21–52.MathSciNetMATHGoogle Scholar
  196. 196.
    Nigmatullin, R.R., Fractional Integral and Its Physical Interpretation, Teor. Mat. Fiz., 1992, vol. 90, no. 3, pp. 354–368.MathSciNetCrossRefGoogle Scholar
  197. 197.
    Le Mehaute, A., Nigmatullin, R.R., and Nivanen, L., Fl”eches du temps et géometrie fractale, Paris: Hermez, 1998.Google Scholar
  198. 198.
    Nigmatullin, R.R. and Le Mehaute, A., The Geometrical and Physical Meaning of the Fractional Integral with Complex Exponent, Intern. J. Sci., “Georesourses,” 2004, no. 1(8), pp. 2–9.Google Scholar
  199. 199.
    Nigmatullin, R.R. and Le Mehaute, A., Is There Geometrical/Physical Meaning of the Fractional Integral with Complex Exponent?, J. Non-Cryst. Sol., 2005, vol. 351, pp. 2888–2899.CrossRefGoogle Scholar
  200. 200.
    Ren, F.-Y., Yu, Z.-G., and Su, F., Fractional Integral Associated to the Self-Similar Set or the Generalized Self-Similar Set and Its Physical Interpretation, Phys. Lett. A, 1996, vol. 219, no. 1-1, pp. 59–68.MathSciNetMATHCrossRefGoogle Scholar
  201. 201.
    Yu, Z.-G., Ren, F.-Y., and Zhou, J., Fractional Integral Associated to Generalized Cookie-Cutter Set and Its Physical Interpretation, J. Phys. A: Math. Gen., 1997, vol. 30, no. 15, pp. 5569–5578.MathSciNetMATHCrossRefGoogle Scholar
  202. 202.
    Ren, F.Y. and Liang, J.-R., The Non-Integer Operation Associated to Random Variation Sets of the Self-Similar Set, Physica A, 2000, vol. 286, no. 1–2, pp. 45–55.MATHCrossRefGoogle Scholar
  203. 203.
    Ren, F.-Y., Liang, J.-R., Wang, X.-T., and Qiu, W.-Y., Integrals and Derivatives on Net Fractals, Chaos, Solitons Fractals, 2003, vol. 16, pp. 107–117.MathSciNetMATHCrossRefGoogle Scholar
  204. 204.
    Moshrefi-Torbati, M. and Hammond, J.K., Physical and Geometrical Interpretation of Fractional Operators, J. Franklin Inst., 1998, vol. 335B, no. 6, pp. 1077–1086.MathSciNetMATHCrossRefGoogle Scholar
  205. 205.
    Rutman, R.S., On the Paper by R.R. Nigmatullin “Fractional Integral and Its Physical Interpretation,” Teor. Mat. Fiz., 1994, vol. 100, no. 3, pp. 476–478.MathSciNetCrossRefGoogle Scholar
  206. 206.
    Gorenflo, R., Afterthoughts on Interpretation of Fractional Derivatives and Integrals, in Proc. 2nd Int. Workshop “Transform Methods and Special Functions,” Varna’96, Sofia, 1998, pp. 589–591.Google Scholar
  207. 207.
    Stanislavsky, A.A. and Weron, K., Exact Solution of Averaging Procedure over the Cantor Set, Physica A, 2002, vol. 303, no. 1–2, pp. 57–66.MathSciNetMATHCrossRefGoogle Scholar
  208. 208.
    Stanislavsky, A.A., Probabilistic Interpretation of the Fractional-order Integral, Teor. Mat. Fiz., 2004, vol. 138, no. 3, pp. 491–507.CrossRefGoogle Scholar
  209. 209.
    Parvate, A. and Gangal, A.D., Calculus on Fractal Subsets of Real Line-I: Formulation, Fractals, 2009, vol. 17, no. 1, pp. 53–81.MathSciNetMATHCrossRefGoogle Scholar
  210. 210.
    Parvate, A., Satin, S., and Gangal, A.D., Calculus on Fractal Curves in Rn, Fractals, 2011, vol. 19, no. 1, pp. 15–27.MathSciNetMATHCrossRefGoogle Scholar
  211. 211.
    Tatom, F.B., The Relationship between Fractional Calculus and Fractals, Fractals, 1995, vol. 3, no. 1, pp. 217–229.MathSciNetMATHCrossRefGoogle Scholar
  212. 212.
    Yao, K., Su, W.Y., and Zhou, S.P., On the Connection between the Order of Fractional Calculus and the Dimensions of a Fractal Function, Chaos, Solitons Fractals, 2005, vol. 23, pp. 621–629.MathSciNetMATHCrossRefGoogle Scholar
  213. 213.
    Tarasov, V.E., Fractional Generalization of Liouville Equations, Chaos, 2004, vol. 14, no. 1, pp. 123–127.CrossRefGoogle Scholar
  214. 214.
    Tarasov, V.E., Fractional Fokker-Planck Equation for Fractal Media, Chaos, 2005, vol. 15, no. 2 (paper ID 023102).Google Scholar
  215. 215.
    Tarasov, V.E., Dynamics of Fractal Solids, Int. J. Mod. Phys. B, 2005, vol. 19, no. 27, pp. 4103–4114.MATHCrossRefGoogle Scholar
  216. 216.
    Tarasov, V.E., Electromagnetic Fields on Fractals, Mod. Phys. Lett. A, 2006, vol. 21, no. 20, pp. 1587–1600.MATHCrossRefGoogle Scholar
  217. 217.
    Tarasov, V.E., Multipole Moments of Fractal Distribution of Charges, Mod. Phys. Lett. B, 2005, vol. 19, no. 22, pp. 1107–1118.MathSciNetMATHCrossRefGoogle Scholar
  218. 218.
    Tarasov, V.E., Continuous Medium Model for Fractal Media, Phys. Lett. A, 2005, vol. 336, pp. 167–174.MATHCrossRefGoogle Scholar
  219. 219.
    Tarasov, V.E., Possible Experimental Test of Continuous Medium Model for Fractal Media, Phys. Lett. A, 2005, vol. 341, pp. 467–472.CrossRefGoogle Scholar
  220. 220.
    Tarasov, V.E., Wave Equation for Fractal Solid String, Mod. Phys. Lett. B, 2005, vol. 19, no. 15, pp. 721–728.MATHCrossRefGoogle Scholar
  221. 221.
    Tarasov, V.E., Universal Electromagnetic Waves in Dielectric, J. Phys.: Cond. Mat., 2008, vol. 20, pp. 175223–175229.CrossRefGoogle Scholar
  222. 222.
    Tarasov, V.E., Electromagnetic Field of Fractal Distribution of Charged Particles, Phys. Plasmas., 2005, vol. 12 (paper ID 082106).Google Scholar
  223. 223.
    Tarasov, V.E. and Zaslavsky, G.M., Fractional Ginzburg-Landau Equation for Fractal Media, Physica A, 2005, vol. 353, pp. 249–261.CrossRefGoogle Scholar
  224. 224.
    Metzler, R. and Nonnenmacher, T.F., Space- and Time-Fractional Diffusion and Wave Equations, Fractional Fokker-Planck Equations, and Physical Motivation, Chem. Phys., 2002, vol. 284, pp. 67–90.CrossRefGoogle Scholar
  225. 225.
    Ortigueira, M.D. and Batista, A.G., On the Relation Between the Fractional Brownian Motion and the Fractional Derivatives, Phys. Lett. A, 2008, vol. 372, pp. 958–968.MathSciNetMATHCrossRefGoogle Scholar
  226. 226.
    Bagley, R.L. and Torvik, P.J., A Theoretical Basis for Application of Fractional Calculus to Viscoelasticity, J. Rheol., 1983, vol. 27, no. 3, pp. 201–210.MATHCrossRefGoogle Scholar
  227. 227.
    Bagley, R.L. and Torvik, P.J., On the Fractional Calculus Model of Viscoelastic Behavior, J. Rheol., 1986, vol. 30, no. 1, pp. 133–155.MATHCrossRefGoogle Scholar
  228. 228.
    Debnath, L., Recent Applications of Fractional Calculus to Science and Engineering, Int. J. Math. Math. Sci., 2003, vol. 54, pp. 3413–3442.MathSciNetCrossRefGoogle Scholar
  229. 229.
    Vazquez, L., From Newton’s Equation to Fractional Diffusion and Wave Equations, Adv. Diff. Eq., 2011, vol. 2011 (article ID 169421).Google Scholar
  230. 230.
    Nigmatullin, R.R., Theory of Dielectric Relaxation in Non-Crystalline Solids: From a Set of Micromotions to the Averaged Collective Motion in the Mesoscale Region, Physica B, 2005, vol. 358, pp. 201–215.CrossRefGoogle Scholar
  231. 231.
    Nigmatullin, R.R., “Fractional” Kinetic Equations and “Universal” Decoupling of a Memory Function in Mesoscale Region, Physica A, 2006, vol. 363, pp. 282–298.CrossRefGoogle Scholar
  232. 232.
    Miskinis, P., The Havriliak-Negami Susceptibility as a Nonlinear and Nonlocal Process, Physica Scr., 2009, vol. T136 (paper ID 014019).Google Scholar
  233. 233.
    Zhang, Y., Benson, D.A., and Reeves, D.M., Time and Space Nonlocalities Underlying Fractional-Derivative Models: Distinction and Literature Review of Field Applications, Adv. Water Res., 2009, vol. 32, pp. 561–581.CrossRefGoogle Scholar
  234. 234.
    Luchko, Y.F., Rivero, M., Trujillo, J.J., and Velasco, M.P., Fractional Models, Non-Locality, and Complex Systems, Comp. Math. Appl., 2010, vol. 59, pp. 1048–1056.MathSciNetMATHCrossRefGoogle Scholar
  235. 235.
    Mainardi, F., Mura, A., and Pagnini, G., The M-Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey, Int. J. Diff. Eq., 2010, vol. 2010 (article ID 104505).Google Scholar
  236. 236.
    Uchaikin, V.V., Automodel Anomalous Diffusion and Stable Laws, Usp. Phys. Nauk, 2003, vol. 173, no. 8, pp. 847–876.CrossRefGoogle Scholar
  237. 237.
    Lazopoulos, K.A., Non-local Continuum Mechanics and Fractional Calculus, Mech. Res. Commun., 2006, vol. 33, pp. 753–757.MathSciNetMATHCrossRefGoogle Scholar
  238. 238.
    Sibatov, R.T. and Uchaikin, V.V., Fractional Differential Kinetics of Charge Transfer in Disordered Semiconductors, Fiz. Tekhn. Poluprov., 2007, vol. 41, no. 3, pp. 346–351.Google Scholar
  239. 239.
    Jesus, I.S. and Machado, J.A.T., Development of Fractional Order Capacitors Based on Electrolyte Processes, Nonlin. Dyn., 2009, vol. 56, pp. 45–55.MATHCrossRefGoogle Scholar
  240. 240.
    Jesus, I.S., Machado, J.A.T., and Cunha, J.B., Fractional Electrical Impedances in Botanical Elements, J. Vibr. Control, 2008, vol. 14, no. 9–10, pp. 1389–1402.MATHCrossRefGoogle Scholar
  241. 241.
    Meral, F.C., Royston, T.J., and Magin, R., Fractional Calculus in Viscoelasticity: An Experimental Study, Commun. Nonlin. Sci. Numer. Simul., 2010, vol. 15, pp. 939–945.MathSciNetMATHCrossRefGoogle Scholar
  242. 242.
    Uchaikin, V.V., On Fractional Differential Models of Acceleration of Cosmic Rays in the Galaxy, Pis’ma ZhETF, 2010, vol. 92, no. 4, pp. 226–232.Google Scholar
  243. 243.
    Tarasov, V.E., Map of Discrete System into Continuous, J. Math. Phys., 2006, vol. 47 (paper ID 092901).Google Scholar
  244. 244.
    Tarasov, V.E., Continuous Limit of Discrete Systems with Long-Range Interaction, J. Phys. A: Math. Gen., 2006, vol. 39, pp. 14895–14910.MathSciNetMATHCrossRefGoogle Scholar
  245. 245.
    Tarasov, V.E., Differential Equations with Fractional Derivative and Universal Map with Memory, J. Phys. A: Math. Theor., 2009, vol. 42 (paper ID 465102).Google Scholar
  246. 246.
    Tarasov, V.E., Discrete Map with Memory from Fractional Differential Equation of Arbitrary Positive Order, J. Math. Phys., 2009, vol. 50 (paper ID 122703).Google Scholar
  247. 247.
    Cottone, G., Di Paola, M., and Zingales, M., Fractional Mechanical Model for the Dynamics of Non-Local Continuum, Lect. Notes Elect. Eng., 2009, vol. 11, pp. 389–423.CrossRefGoogle Scholar
  248. 248.
    Korabel, N., Zaslavsky, G.M., and Tarasov, V.E., Coupled Oscillators with Power-Law Interaction and Their Fractional Dynamics Analogues, Commun. Nonlin. Sci. Numer. Simul., 2007, vol. 12, pp. 1405–1417.MathSciNetMATHCrossRefGoogle Scholar
  249. 249.
    Carpinteri, A., Cornetti, P., Sapora, A., Di Paola, M., and Zingales, M., Fractional Calculus in Solid Mechanics: Local Versus Non-Local Approach, Phys. Scr., 2009, vol. T136 (paper ID 014003).Google Scholar
  250. 250.
    Naqvi, S.A., Naqvi, Q.A., and Hussain, A., Modelling of Transmission through a Chiral Slab Using Fractional Curl Operator, Opt. Commun., 2006, vol. 266, pp. 404–406.CrossRefGoogle Scholar
  251. 251.
    Wu, J.-N., Huang, C.-H., Cheng, S.-C., and Hsieh, W.-F., Spontaneous Emission from a Two-Level Atom in Anisotropic One-Band Photonic Crystals: A Fractional Calculus Approach, Phys. Rev. A, 2010, vol. 81 (paper ID 023827).Google Scholar
  252. 252.
    Mainardi, F. and Gorenflo, R., Time-Fractional Derivatives in Relaxation Processes: a Tutorial Survey, Frac. Calc. Appl. Anal., 2007, vol. 10, no. 3, pp. 269–308.MathSciNetMATHGoogle Scholar
  253. 253.
    Rekhviashvili, S.Sh., Modeling Flicker Noise with the Use of Fractional Integro-Differentiation, Zh. Teor. Fiz., 2006, vol. 76, no. 6, pp. 123–126.Google Scholar
  254. 254.
    Manabe, S., The Non-integer Integral and Its Application to Control Systems, ETJ Japan, 1961, vol. 6, no. 3/4, pp. 83–87.Google Scholar
  255. 255.
    Manabe, S., The System Design by Use of a Model Consisting of a Saturation and Noninteger Integrals, ETJ Japan, 1963, vol. 8, no. 3/4, pp. 147–150.Google Scholar
  256. 256.
    Hilfer, R., Fractional Dynamics, Irreversibility and Ergodicity Breaking, Chaos, Solitons Fractals, 1995, vol. 5, no. 8, pp. 1475–1484.MathSciNetMATHCrossRefGoogle Scholar
  257. 257.
    Vainstein, M.H., Costa, I.V.L., and Oliveira, F.A., Mixing, Ergodicity and the Fluctuation-Dissipation Theorem in Complex Systems, Lect. Notes Phys., 2006, vol. 688, pp. 159–188.CrossRefGoogle Scholar
  258. 258.
    Gaies, A. and El-Akrmi, A., Fractional Variational Principle in Macroscopic Picture, Phys. Scr., 2004, vol. 70, pp. 7–10.CrossRefMATHGoogle Scholar
  259. 259.
    Jumarie, G., Probability Calculus of Fractional Order and Fractional Taylor’s Series Application to Fokker-Planck Equation and Information of Non-Random Functions, Chaos, Solitons Fractals, 2009, vol. 40, pp. 1428–1448.MathSciNetMATHCrossRefGoogle Scholar
  260. 260.
    Jumarie, G., Path Probability of Random Fractional Systems Defined by White Noises in Coarse-Grained Time. Application of Fractional Entropy, Frac. Diff. Eq., 2011, vol. 1, no. 1, pp. 45–87.MathSciNetGoogle Scholar
  261. 261.
    Cottone, G., Di Paola, M., and Butera, S., Stochastic Dynamics of Nonlinear Systems with a Fractional Power-Law Nonlinear Term: The Fractional Calculus Approach, Prob. Eng. Mech., 2011, vol. 26, pp. 101–108.CrossRefGoogle Scholar
  262. 262.
    Ramirez, L.E.S. and Coimbra, C.F.M., On the Selection and Meaning of Variable Order Operators for Dynamic Modeling, Int. J. Diff. Eq., 2010, vol. 2010 (article ID 846107).Google Scholar
  263. 263.
    Stanislavsky, A.A., The Stochastic Nature of Complexity Evolution in the Fractional Systems, Chaos, Solitons Fractals, 2007, vol. 34, pp. 51–61.MathSciNetMATHCrossRefGoogle Scholar
  264. 264.
    Repin, O.N. and Saichev, A.I., Fractional Poisson Law, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2005, vol. 43, no. 9, pp. 823–826.MathSciNetGoogle Scholar
  265. 265.
    Machado, J.A.T., A Probabilistic Interpretation of the Fractional-order Differentiation, Frac. Calc. Appl. Anal., 2003, vol. 6, no. 1, pp. 73–80.MATHGoogle Scholar
  266. 266.
    Machado, J.A.T., Fractional Derivatives: Probability Interpretation and Frequency Response of Rational Approximations, Commun. Nonlin. Sci. Numer. Simulat., 2009, vol. 14, pp. 3492–3497.CrossRefGoogle Scholar
  267. 267.
    Machado, J.A.T., Time-Delay and Fractional Derivatives, Adv. Diff. Eq., 2011, vol. 2011 (article ID 934094).Google Scholar
  268. 268.
    Ubriaco, M.R., Entropies Based on Fractional Calculus, Phys. Lett. A, 2009, vol. 373, pp. 2516–2519.MathSciNetMATHCrossRefGoogle Scholar
  269. 269.
    Butkovskii, A.G., Strukturnaya teoriya raspredelennykh sistem (Structural Theory of Distributed Systems), Moscow: Nauka, 1977.Google Scholar
  270. 270.
    Butkovskii, A.G., Kharakteristiki sistem s raspredelennymi parametrami (Characteristics of Distributed-parameter Systems), Moscow: Nauka, 1979.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. G. Butkovskii
    • 1
  • S. S. Postnov
    • 1
  • E. A. Postnova
    • 1
    • 2
  1. 1.Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations