Skip to main content
Log in

Design of prescribed-precision controllers of multivariable systems by root-mean-square criterion on the basis of LQ-optimization procedures

  • Determinate Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

A problem of designing the continuous controllers of multivariable linear systems ensuring in the root-mean-square their desired precision in the controlled variables under the action of nonmeasurable, power-bounded polyharmonic determinate exogenous disturbances having unknown amplitudes, frequencies, and number of frequencies was formulated. Conditions were established for solvability of the problem with state controllers (in this case, the disturbances and controls must be applied to the same point) and measurable output controllers (the plant must be minimum phase with the same number of controls and controlled variables) on the basis of the LQ-optimization procedures by selecting the weight coefficients of the quadratic optimization functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kwakernaak, H. and Sivan, R., Linear Optimal Control Systems, New York: Wiley, 1972. Translated under the title Lineinye optimal’nye sistemy upravleniya, Moscow: Mir, 1977.

    MATH  Google Scholar 

  2. Sadomtsev, Yu.V., Fundamentals of the Approach to the Problem of Stochastic Linear Control and Tracking by the Precision and Robustness Criteria, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 1998, no. 4, pp. 57–94.

  3. Sadomtsev, Yu.V., Problem of Statistical Accuracy in the Theory of Multivariable Systems of Automatic Control, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2001, no. 2, pp. 48–59.

  4. Sadomtsev, Yu.V., Konstruirovanie sistem upravleniya s obratnoi svyaz’yu po kriteriyam tochnosti i grubosti (Design of Feedback Control Systems by Criteria of Precision and Robustness), Saratov: Sarat. Techn. Univ., 2003.

    Google Scholar 

  5. Chestnov, V.N., Synthesis of Multidimensional Systems of Prescribed Accuracy by the Mean-Square Criterion, Autom. Remote Control, 1998, vol. 59, no. 12, part 1, pp. 1786–1793.

    MathSciNet  MATH  Google Scholar 

  6. Aleksandrov, A.G. and Chestnov, V.N., Synthesis of Multivariable Systems of Prescribed Accuracy. Part I. Use of Procedures of LQ-Optimization, Autom. Remote Control, 1998, vol. 59, no. 7, part 2, pp. 973–983.

    MathSciNet  MATH  Google Scholar 

  7. Letov, A.M., Analytical Controller Design. I–IV, Autom. Remote Control, 1960, vol. 21, no. 4, pp. 303–306; no. 5, pp. 389–393; no. 6, pp. 458–461; 1961, vol. 22, no. 4, pp. 363–372.

    MATH  Google Scholar 

  8. Kalman, R.E., Contributions to the Theory of Optimal Control, Bol. Soc. Mat. Mexicana, 1960, vol. 5, no. 1, pp. 102–119.

    MathSciNet  Google Scholar 

  9. Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A., State-space Solution to Standard H 2 and H Control Problem, IEEE Trans. Automat. Control, 1989, vol. 34, no. 8, pp. 831–846.

    Article  MathSciNet  MATH  Google Scholar 

  10. Petrov, Yu.P., Sintez optimal’nykh sistem upravleniya pri nepolnost’yu izvestnykh vozmushchayushchikh silakh (Design of Optimal Control Systems under Incompletely Known Disturbing Forces), Leningrad: Leningr. Gos. Univ., 1987.

    Google Scholar 

  11. Aleksandrov, A.G., Sintez regulyatorov mnogomernykh sistem (Design of Controllers of Multivariable Systems), Moscow: Mashinostroenie, 1986.

    Google Scholar 

  12. Anderson, B.D.O. and Moore J.B., Linear Optimal Control, New York: Prentice Hall, 1971.

    MATH  Google Scholar 

  13. Aleksandrov, A.G., Properties of Analytically Constructed Linear Systems, Autom. Remote Control, 1975, vol. 36, no. 10, part 1, pp. 1573–1579.

    MATH  Google Scholar 

  14. Lehtomaki, N.A., Sandell, N.R., and Athans, M., Robustness Results in Linear-Quadratic Gaussian Based Multivariable Control Designs, IEEE Trans. Automat. Control, 1981, vol. 26, no. 1, pp. 75–92.

    Article  MathSciNet  MATH  Google Scholar 

  15. Safonov, M.G. and Athans, M., Gain and Phase Margin for Multiloop LQG Regulators, IEEE Trans. Automat. Control, 1977, vol. 22, no. 2, pp. 173–179.

    Article  MathSciNet  MATH  Google Scholar 

  16. Krasovskii, A.A., Sistemy avtomaticheskogo upravleniya poletom i ikh analiticheskoe konstruirovanie (Systems of Automatic Flight Control and Their Analytical Design), Moscow: Nauka, 1973.

    Google Scholar 

  17. Kim, D.P., Teoriya avtomaticheskogo upravleniya, tom 2: Mnogomernye, nelineinye, optimal’nye, i adaptivnye sistemy (Automatic Control Theory, vol. 2: Multivariable, Nonlinear, Optimal, and Adaptive Systems), Moscow: Fizmatlit, 2007.

    Google Scholar 

  18. Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, New Jersey: Prentice Hall, 1996.

    MATH  Google Scholar 

  19. Aleksandrov, A.G. and Nebaluev, N.A., Analytical Synthesis of Controller Transfer Matrices on the Basis of Frequency Domain Performance Criteria. I, Autom. Remote Control, 1971, vol. 32, no. 12, part 1, pp. 1871–1878.

    MATH  Google Scholar 

  20. Sadomtsev, Yu.V., Analytical Design of Controllers by the Prescribed Performance Indices. Development of the Problem, in Analytical Methods of Controller Design, collected papers, Saratov: Sarat. Polytech. Inst., 1980, pp. 32–48.

    Google Scholar 

  21. Timofeev, Yu.K., Static Errors of Analytically Designed Systems, in Analytical Methods of Controller Design, Saratov: Sarat. Polytech. Inst., 1976, pp. 53–60.

    Google Scholar 

  22. Voronov, A.A., Osnovy teorii avtomaticheskogo upravleniya. Avtomaticheskoe regulirovanie nepreryvnykh lineinykh sistem (Fundamentals of The Automatic Control Theory. Automatic Control of Continuous Linear Systems), Moscow: Energiya, 1980.

    Google Scholar 

  23. Doyle, J.C. and Stein, G., Robustness with Observers, IEEE Trans. Automat. Control, 1979, vol. 24, no. 4, pp. 607–611.

    Article  MathSciNet  MATH  Google Scholar 

  24. Doyle, J.C. and Stein, G., Multivariable Feedback Design: Concepts for a Classical/Modern Synthesis, IEEE Trans. Automat. Control, 1981, vol. 26, no. 1, pp. 4–16.

    Article  MATH  Google Scholar 

  25. Yakubovich, V.A., Linear-quadratic Problem of Optimal Damping of Forced Oscillations under Unknown Harmonic Exogenous Action, Dokl. Ross. Akad. Nauk, 1993, vol. 333, no. 2, pp. 170–172.

    Google Scholar 

  26. Davison, E.J. and Patel, P., Application of the Robust Servomechanism Controller to Systems with Periodic Tracking/Disturbance Signals, Int. J. Control, 1988, vol. 47, no. 1, pp. 111–127.

    Article  MATH  Google Scholar 

  27. Savkin, A.V. and Petersen, I.R., Robust Control with Rejection of Harmonic Disturbances, IEEE Trans. Automat. Control, 1995, vol. 40, no. 11, pp. 1968–1971.

    Article  MathSciNet  MATH  Google Scholar 

  28. Chestnov, V.N., Design of Robust H -controllers of Multivariable Systems Based on the Given Stability Degree, Autom. Remote Control, 2007, vol. 68, no. 3, pp. 557–563.

    Article  MathSciNet  MATH  Google Scholar 

  29. Agafonov, P.A. and Chestnov, V.N., H -Control for Guaranteed Simultaneous Input and Output Stability Margins for a Multivariate System, Autom. Remote Control, 2004, vol. 65, no. 9, pp. 1452–1460.

    Article  MathSciNet  MATH  Google Scholar 

  30. Agafonov, P.A. and Chestnov, V.N., Controllers of a Given Radius of Stability Margin: Their Design by the H -approach with Regard for External Disturbances, Autom. Remote Control, 2004, vol. 65, no. 10, pp. 1611–1617.

    Article  MathSciNet  MATH  Google Scholar 

  31. Weinmann, A., Uncertain Models and Control, New York: Springer-Verlag, 1991.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Zh.V. Zatsepilova, V.N. Chestnov, 2011, published in Avtomatika i Telemekhanika, 2011, No. 11, pp. 70–85.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zatsepilova, Z.V., Chestnov, V.N. Design of prescribed-precision controllers of multivariable systems by root-mean-square criterion on the basis of LQ-optimization procedures. Autom Remote Control 72, 2285–2299 (2011). https://doi.org/10.1134/S000511791111004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000511791111004X

Keywords

Navigation