Skip to main content
Log in

Dissipativity and risk-sensitivity in control problems

  • Large Scale Systems Control
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This paper overviews several results connected with using the properties of dissipativity and risk-sensitivity in control problems. It is demonstrated that these properties serve as powerful analysis and synthesis tools for deterministic and stochastic control systems. Finally, we substantiate the relevance of research focused on feasibility of combining the properties in question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liptser, R.Sh. and Shiryaev, A.N., Teoriya martingalov (Martingale Theory), Moscow: Nauka, 1986.

    MATH  Google Scholar 

  2. Mazurov, A.Yu., Dissipativity of Stochastic Systems with Risk-Sensitive Storage Functions, Cand. Sci. (Phys.-Math.) Dissertation, Nizhni Novgorod: Alekseev State Technical Univ., 2010.

    Google Scholar 

  3. Pakshin, P.V., Dissipativity of Diffusion Itô Processes with Markovian Switching and Problems of Robust Stabilization, Autom. Remote Control, 2007, vol. 68, no. 9, pp. 1502–1519.

    Article  MathSciNet  MATH  Google Scholar 

  4. Pakshin, P.V., Exponential Dissipativeness of the Random-structure Diffusion Processes and Problems of Robust Stabilization, Autom. Remote Control, 2007, vol. 68, no. 10, pp. 1852–1871.

    Article  MathSciNet  MATH  Google Scholar 

  5. Polushin, I.G., Fradkov, A.L., and Hill, D.J., Passivity and Passification of Nonlinear Systems, Autom. Remote Control, 2000, vol. 61, no. 3, pp. 355–389.

    MathSciNet  MATH  Google Scholar 

  6. Khas’minskii, R.Z., Ustoichivost’ sistem differentsial’nykh uravnenii pri sluchainykh vozmushcheniyakh ikh parametrov (Stability of Combined Differential Equations under Random Perturbations of Their Parameters), Moscow: Nauka, 1969.

    Google Scholar 

  7. Aliyu, M.D.S., Dissipative Analysis and Stability of Nonlinear Stochastic State-delayed Systems, Nonlinear Dynamics and Systems Theory, 2004, vol. 4, pp. 243–256.

    MathSciNet  MATH  Google Scholar 

  8. Arslan, G. and Başar, T., Risk-sensitive Adaptive Trackers for Strict-feedback Systems with Output Measurements, IEEE Trans. Autom. Control, 2002, vol. 47, pp. 1754–1758.

    Article  Google Scholar 

  9. Athans, M., The Role and Use of the Stochastic Linear-quadratic-Gaussian Problem in Control System Design, IEEE Trans. Autom. Control, 1971, vol. 16, pp. 529–552.

    Article  MathSciNet  Google Scholar 

  10. Başar, T. and Bernhard, P., H -optimal Control and Related Minimax Design Problems: A Dynamic Game Approach, Boston: Birkhauser, 1995.

    MATH  Google Scholar 

  11. Bensoussan, A. and Van Schuppen, J.H., Optimal Control of Partially Observable Stochastic Systems with an Exponential-of-integral Performance Index, SIAM J. Control Optim., 1985, vol. 23, no. 4, pp. 599–613.

    Article  MathSciNet  MATH  Google Scholar 

  12. Borkar, V.S. and Mitter, S.K., A Note on Stochastic Dissipativeness, in Directions in Mathematical Systems Theory and Optim., Lecture Notes in Control Inform., vol. 286, Berlin: Springer, 2003, pp. 41–49.

    Google Scholar 

  13. Byrnes, C.I., Isidori, A., and Willems, J.C., Passivity, Feedback Equivalence, and the Global Stabilization of Minimum Phase Nonlinear Systems, IEEE Trans. Autom. Control, 1991, vol. 36, pp. 1228–1240.

    Article  MathSciNet  MATH  Google Scholar 

  14. Cavazos-Cadena, R. and Fernández-Gaucherand, E., Controlled Markov Chains with Risk-sensitive Criteria: Average Costs, Optimality Equations, and Optimal Solutions, Math. Methods Oper. Res., 1999, vol. 49, pp. 299–324.

    MathSciNet  MATH  Google Scholar 

  15. Dawson, D.M., Nonlinear Control of Electric Machinery, London: Marcel Dekker, 1998.

    Google Scholar 

  16. Fleming, W.H. and Hernández-Hernández, D., Risk-sensitive Control of Finite State Machines on an Infinite Horizon I, SIAM J. Control Optim., 1997, vol. 35, no. 5, pp. 1790–1810.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fleming, W.H. and Hernández-Hernández, D., Risk-sensitive Control of Finite State Machines on an Infinite Horizon II, SIAM J. Control Optim., 1999, vol. 37, pp. 1048–1069.

    Article  MathSciNet  MATH  Google Scholar 

  18. Fleming, W.H. and James, M.R., The Risk-sensitive Index and the H 2 and H Norms for Nonlinear Systems, Math. Control Signals Syst., 1995, vol. 8, pp. 199–221.

    Article  MathSciNet  MATH  Google Scholar 

  19. Fleming, W.H. and McEneaney, W.M., Risk-sensitive Control on an Infinite Time Horizon, SIAM J. Control Optim., 1995, vol. 33, no. 6, pp. 1881–1915.

    Article  MathSciNet  MATH  Google Scholar 

  20. Fleming, W.H. and McEneaney, W.M., Risk Sensitive Control and Differential Games, in Springer Lecture Notes in Control and Info. Sci., vol. 184, New York: Springer-Verlag, 1992, pp. 185–197.

    Google Scholar 

  21. Fleming, W.H. and Zhang, Q., Risk-sensitive Production Planning of a Stochastic Manufacturing System, SIAM J. Control Optim., 1998, vol. 36, pp. 1147–1170.

    Article  MathSciNet  MATH  Google Scholar 

  22. Florchinger, P., A Passive System Approach to Feedback Stabilization of Nonlinear Control Stochastic Systems, SIAM J. Control Optim., 1999, vol. 37, pp. 1848–1864.

    Article  MathSciNet  MATH  Google Scholar 

  23. Fossen, T., Nonlinear Backstepping Design: Application to Mechanical Systems and Ship Control, New York: Springer-Verlag, 1999.

    Google Scholar 

  24. Glover, K. and Doyle, J.C., State-space Formulae for All Stabilizing Controllers that Satisfy an H -norm Bound and Relations to Risk Sensitivity, Syst. Control Lett., 1988, vol. 11, pp. 167–172.

    Article  MathSciNet  MATH  Google Scholar 

  25. Hernández-Hernández, D. and Marcus, S.J., Risk Sensitive Control of Markov Processes in Countable State Space, Syst. Control Lett., 1996, vol. 29, no. 3, pp. 147–155.

    Article  MATH  Google Scholar 

  26. Howard, R.A. and Matheson, J.A., Risk-sensitive Markov Decision Processes, Manage Sci., 1972, vol. 18, pp. 357–370.

    Article  MathSciNet  Google Scholar 

  27. Jacobson, D.H., Optimal Stochastic Linear Systems with Exponential Performance Criteria and Their Relation to Deterministic Differential Games, IEEE Trans. Autom. Control, 1973, vol. 18, pp. 124–131.

    Article  MATH  Google Scholar 

  28. James, M.R. and Baras, J.S., Partially Observed Differential Games, Infinite-dimensional Hamilton-Jacobi-Isaacs Equations, and Nonlinear H Control, SIAM J. Control Optim., 1996, vol. 34, pp. 1342–1364.

    Article  MathSciNet  MATH  Google Scholar 

  29. James, M.R., Asymptotic Analysis of Nonlinear Stochastic Risk-sensitive Control and Differential Games, Math. Control Signals Syst., 1992, vol. 5, pp. 401–417.

    Article  MATH  Google Scholar 

  30. Janković, M., Janković, M., and Kolmanovsky, I., Constructive Lyapunov Control Design for Turbocharged Diesel Engines, Proc. 17th Am. Control Conf., Philadelphia, 1998, pp. 1389–1394.

  31. Kaise, H. and Nagai, H., Bellman-Isaacs Equations of Ergodic Type Related to Risk-sensitive Control and Their Singular Limits, Asympt. Anal., 1998, vol. 16, pp. 347–362.

    MathSciNet  MATH  Google Scholar 

  32. Krainak, J., Speyer, J., and Marcus, S., Static Team Problems-Part I: Sufficient Conditions and the Exponential Cost Criterion, IEEE Trans. Autom. Control, 1982, vol. 27, pp. 839–848.

    Article  MathSciNet  MATH  Google Scholar 

  33. McEneaney, W.M., Connections between Risk-sensitive Stochastic Control, Differential Games and H -control: The Nonlinear Case, PhD Dissertation, R.I.: Brown Univ., 1993.

    Google Scholar 

  34. Ortega, R. and Spong, M.W., Adaptive Motion Control of Rigid Robots: A Tutorial, Automatica, 1989, vol. 25, no. 6, pp. 877–888.

    Article  MathSciNet  MATH  Google Scholar 

  35. Pan, Z. and Başar, T., Backstepping Controller Design for Nonlinear Stochastic Systems under a Risksensitive Cost Criterion, SIAM J. Control Optim., 1999, vol. 37, pp. 957–995.

    Article  MathSciNet  MATH  Google Scholar 

  36. Pogromsky, A.Yu., Fradkov, A.L., and Hill, D.J., Passivity Based Damping of Power System Oscillations, Proc. 35th IEEE Conf. on Decision and Control, Kobe, 1996, pp. 3876–3881.

  37. Runolfsson, T., The Equivalence between Infinite-horizon Optimal Control of Stochastic Systems with Exponential-of-integral Performance Index and Stochastic Differential Games, IEEE Trans. Autom. Control, 1994, vol. 39, no. 8, pp. 1551–1563.

    Article  MathSciNet  MATH  Google Scholar 

  38. Runolfsson, T., Stationary Risk-sensitive LQG Control and Its Relation to LQG and H -control, Proc. 29th IEEE Conf. on Decision and Control, 1990, pp. 1018–1023.

  39. Runolfsson, T., Risk-sensitive Control of Stochastic Hybrid Systems on Infinite Time Horizon, Math. Problems in Engineering, 2000, vol. 5, pp. 459–478.

    Article  MATH  Google Scholar 

  40. Shaked, U. and Berman, N., H Control for Nonlinear Stochastic Systems: The Output-feedback Case, Preprints 16th IFAC World Congr., Prague, 2005, CD-ROM, pp. 1–6.

  41. Sira-Ramires, H. and Angulo-Núñez, M.I., Passivity-based Control of Nonlinear Chemical Processes, Int. J. Control, 1997, vol. 68, pp. 971–996.

    Article  Google Scholar 

  42. Sira-Ramires, H. and Ortega, R., Passivity-based Control of DC to DC Converters, Proc. 34th IEEE Conf. on Decision and Control, New Orleans, 1995, pp. 3471–3476.

  43. Speyer, J.L., Deyst, J., and Jacobson, D.H., Optimization of Stochastic Linear Systems with Additive Measurement and Process Noise Using Exponential Performance Criteria, IEEE Trans. Autom. Control, 1974, vol. 19, pp. 358–366.

    Article  MathSciNet  MATH  Google Scholar 

  44. Speyer, J.L., An Adaptive Terminal Guidance Scheme Based on an Exponential Cost Criterion with Applications to Homing Missile Guidance, IEEE Trans. Autom. Control, 1976, vol. 21, pp. 371–375.

    Article  MATH  Google Scholar 

  45. Thygesen, U.H., Robust Performance and Dissipation of Stochastic Control Systems, PhD Dissertation, Copenhagen: Technical Univ. of Denmark, 1998.

    Google Scholar 

  46. Van der Ploeg, F., Economic Policy Rules for Risk-sensitive Decision Making, Zeitschrift für National ökonomie, 1984, vol. 44, pp. 207–235.

    MATH  Google Scholar 

  47. Whittle, P., Risk-sensitive Linear/quadratic/Gaussian control, Adv. Appl. Prob., 1981, vol. 13, pp. 764–777.

    Article  MathSciNet  MATH  Google Scholar 

  48. Whittle, P., A Risk-sensitive Maximum Principle: The Case of Imperfect State Observation, IEEE Trans. Autom. Control, 1991, vol. 36, no. 7, pp. 793–801.

    Article  MathSciNet  MATH  Google Scholar 

  49. Whittle, P., A Risk-sensitive Maximum Principle, Syst. Control Lett., 1990, vol. 15, pp. 183–192.

    Article  MathSciNet  MATH  Google Scholar 

  50. Willems, J.C., Dissipative Dynamical Systems. Part I: General Theory, Arch. Rational Mech. Analysis, 1972, vol. 45, pp. 321–351.

    Article  MathSciNet  MATH  Google Scholar 

  51. Willems, J.C., Dissipative Dynamical Systems. Part II: Linear Systems with Quadratic Supply Rates, Arch. Rational Mech. Analysis, 1972, vol. 45, pp. 352–393.

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, W. and Chen, B.-S., State Feedback H Control for a Class of Nonlinear Stochastic Systems, SIAM J. Control Optim., 2006, vol. 44, pp. 1973–1991.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.Yu. Mazurov, 2010, published in Upravlenie Bol’shimi Sistemami, 2010, No. 29, pp. 42–67.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazurov, A.Y. Dissipativity and risk-sensitivity in control problems. Autom Remote Control 72, 2196–2209 (2011). https://doi.org/10.1134/S0005117911100183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117911100183

Keywords

Navigation