Skip to main content
Log in

Optimal adaptive design of the prescribed-structure controllers

  • Robust and Adaptive Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

For the continuous linear control plants with parametric uncertainty, a new approach to the H2-design of multivariable controllers of the prescribed structure was suggested. For the desired reference model of the control system of full and low order, the property of adaptability of such control systems was defined, and the criteria for adaptability in terms of matrices and adaptability gramians were formulated. The structural properties of the matrices and adaptability gramians were analyzed, and their relation to the matrices and the gramians of controllability and observability were established. A new approach to the parametric controller optimization with the use of adaptability gramians was proposed. The integral estimates of the degree of deviation of the performance indices of the stationary continuous control systems with a prescribed-structure controller and the parametric uncertainty of the interval-type plant from the performance indices of the desired reference model of full and low order were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rozenbrock, H.H., State-space and Multivariable Theory, London: Nelson, 1970.

    Google Scholar 

  2. Bukov, V.N., Vlozhenie sistem. Analiticheskii podkhod k analizu i sintezu matrichnykh sistem (System Embedding. An Analytical Approach to Analysis and Design of the Matrix Systems), Kaluga: Bochkareva, 2006.

    Google Scholar 

  3. Kwakernaak, H. and Sivan, P., Modern Signals and Systems, New York: Prentice Hall, 1991.

    MATH  Google Scholar 

  4. Poznyak, A.S., Advanced Mathematical Tools for Automatic Control Engineers, vol. 1: Deterministic Techniques, New York: Elsevier, 2008.

    Google Scholar 

  5. Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob”ektami (Control of Finite-dimensional Linear Plants), Moscow: Nauka, 1976.

    Google Scholar 

  6. Kailat, T., Linear Systems, New York: Prentice Hall, 1980.

    Google Scholar 

  7. Egupov, N.D., Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniya, tom 2: Sintez regulyatorov i teoriya optimizatsii sistem avtomaticheskogo upravleniya (Methods of the Classical and Modern Automatic Control Theory, vol. 2: Design of Controllers and the Theory of Optimization of the Automatic Control Systems), Moscow: Bauman MGTU, 2000.

    Google Scholar 

  8. Afanas’ev, V.N., Kolmanovskii, V.B., and Nosov, V.R., Matematicheskaya teoriya konstruirovaniya sistem upravleniya (Mathematical Theory of Control System Design) Moscow: Vysshaya Shkola, 1989.

    MATH  Google Scholar 

  9. Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, New York: Printice Hall, 1996.

    MATH  Google Scholar 

  10. Krotov, V.F., Lagosha, B.A., Lobanov, S.M., et al., Osnovy teorii optimal’nogo upravleniya (Fundamentals of the Optimal Control Theory), Moscow: Vysshaya Shkola, 1990.

    MATH  Google Scholar 

  11. Anderson, B.D.O. and Moore, J., Optimal Control: Linear Quadratic Methods, New York: Prentice Hall, 1990.

    MATH  Google Scholar 

  12. Korovin, S.K. and Fomichev, V.V., Nablyudateli sostoyaniya dlya lineinykh sistem s neopredelennost’yu (States Observers for Linear Systems with Uncertainty), Moscow: Fizmatlit, 2007.

    Google Scholar 

  13. Misrikhanov, M.Sh., Invariantnoe upravlenie mnogomernymi sistemami (Invariant Control of Multivariable Systems), Moscow: Energoatomizdat, 2003.

    Google Scholar 

  14. Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove lineinykh matrichnykh neravenstv (Design of the Control Laws on the Basis of Linear Matrix Inequalities), Moscow: Nauka, 2007.

    Google Scholar 

  15. Yadykin, I.B., H2-Optimal Tuning Algorithms for Fixed Structure Controllers, Autom. Remote Control, 2008, no. 8, pp. 1319–1332.

  16. Petrov, B.N., Some Problems of the Theory of Searchless Self-adjusting Systems, in Izbrannye trudy, tom 1: Teoriya avtomaticheskogo upravleniya (Selected Works, vol. 1: Automatic Control Theory), Moscow: Nauka, 1983, pp. 294–323.

    Google Scholar 

  17. Petrov, B.N. and Rutkovskii, V.Yu., Double Invariance of the Automatic Control Systems, Dokl. Akad. Nauk SSSR, 1965, vol. 24, no. 6, pp. 789–790.

    Google Scholar 

  18. Zemlyakov, S.D. and Rutkovskij, V.Yu., Functional Controllability and Tunability of Coordinate-Parametric Control Systems, Autom. Remote Control, 1986, no. 2, pp. 169–176.

  19. Fomin, V.N., Fradkov, A.L., and Yakubovich, V.A., Adaptivnoe upravlenie dinamicheskimi ob”ektami (Adaptive Control of Dynamic Plants), Moscow: Nauka, 1981.

    MATH  Google Scholar 

  20. Petrov, B.N., Teryaev, E.D., and Shamrikov, B.M., Conditions for Parametric Identifiabillity in the Open-loop and Closed-loop Automatic Systems, Izv. Akad. Nauk SSSR, Tekh. Kibern., 1977, no. 2, pp. 160–175.

  21. Poznyak, A.S., Osnovy robastnogo upravleniya (N -teoriya) (Fundamentals of Robust Control (N-Theory)), Moscow: Mosk. Fiz. Tekh. Inst., 1991.

    Google Scholar 

  22. Morari, F. and Zafiriou, E., Robust Process Control, New York: Printice Hall, 1989.

    Google Scholar 

  23. Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.

    Google Scholar 

  24. Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, New York: Prentice Hall, 1996.

    MATH  Google Scholar 

  25. Boichenko, V.A., Kurdyukov, A.P., Timin V.N., et al., Some Methods of Designing Controllers of Prescribed Order and Structure, in “Control of Large Systems,” Electronic Collected Papers, Proc. Trapeznikov Inst. of Control Sciences, Moscow: Inst. Probl. Upravlen., 2007, vol. 19, pp. 23–126.

    Google Scholar 

  26. Faddeev, D.K. and Faddeeva, V.N., Vychislitel’nye metody lineinoi algebry (Computational Methods of Linear Algebra), Moscow: Fizmatgiz, 1963.

    Google Scholar 

  27. Hanzon, B. and Peeters, R.L.M., A Faddeev Sequence Method for Solving Lyapunov and Sylvester Equations, Linear Algebra Appl., 1996, vol. 241–243, pp. 401–430.

    Article  MathSciNet  Google Scholar 

  28. Yadykin, I.B., On Properties of Gramians of Continuous Control Systems, Autom. Remote Control, 2010, no. 6, pp. 1011–1021.

  29. Ikramov, Kh.D., Chislennoe reshenie matrichnykh uravnenii (Numerical Solution of Matrix Equations), Moscow: Nauka, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.B. Yadykin, 2011, published in Avtomatika i Telemekhanika, 2011, No. 5, pp. 161–174.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yadykin, I.B. Optimal adaptive design of the prescribed-structure controllers. Autom Remote Control 72, 1048–1060 (2011). https://doi.org/10.1134/S0005117911050122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117911050122

Keywords

Navigation