Automation and Remote Control

, Volume 71, Issue 10, pp 2132–2144 | Cite as

Deterministic optimizational problems of transportation logistics

  • E. M. Bronshtein
  • T. A. Zaiko


We give a survey of a wide class of transportation logistics problems, in which we consider, from a unified standpoint, both discrete (e.g., routing) and continuous (e.g., classical transport) problems. We single out a collection of elementary premises that underlie such problems, give corresponding mathematical models and approaches to the solution. We also consider a new multinomenclature transportation logistics problem.


Remote Control Production Point Transportation Cost Vehicle Route Problem Single Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Parragh, S., Doerner, K., and Hartl, R., A Survey on Pickup and Delivery Problems. I. Transportations between Customers and Depot, J. Betriebswirtschaft, 2008, vol. 58, no. 1, pp. 21–51.CrossRefGoogle Scholar
  2. 2.
    Parragh, S., Doerner, K., and Hartl, R., A Survey on Pickup and Delivery Problems. II. Transportations between Customers and Depot, J. Betriebswirtschaft, 2008, vol. 58, no. 2, pp. 81–117.CrossRefGoogle Scholar
  3. 3.
    Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., and Laporte, G., Static Pickup and Delivery Problems: A Classification Scheme and Survey, TOP, 2007, vol. 15, no. 1, pp. 1–31.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
    Usenko, I.V., A Survey of Decision Making Problems under Uncertain and Fuzzy Conditions for Solving Transportational Problems, Perspekt. Inform. Tekhnologii i Intel. Sistemy, 2008, vol. 34, no. 2, pp. 37–44.MathSciNetGoogle Scholar
  9. 9.
    Mukhacheva, E.A. and Rubinshtein, G.Sh., Matematicheskoe programmirovanie (Mathematical Programming), Novosibirsk: Nauka, 1987.zbMATHGoogle Scholar
  10. 10.
    Eremin, I.I. and Astaf’ev, N.N., Vvedenie v teoriyu lineinogo i vypuklogo programmirovaniya (Introduction to the Theory of Linear and Convex Programming), Moscow: Nauka, 1976.Google Scholar
  11. 11.
    Lovasz, L. and Plummer, M.D., Matching Theory, Budapest: Akademiai Kiado, 1986. Translated under the title Prikladnye zadachi teorii grafov. Teoriya parosochetanii v matematike, fizike, khimii, Moscow: Mir, 1998.zbMATHGoogle Scholar
  12. 12.
    Dantzig, G.B. and Ramser, J.H., The Truck Dispatching Problem, Manage. Sci., 1959, vol. 6, no. 1, pp. 80–91.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, San Francisco: Freeman, 1979. Translatedn under the title Vychislitel’nye mashiny i trudnoreshaemye zadachi, Moscow: Mir, 1982.zbMATHGoogle Scholar
  14. 14.
    Laporte, G., The Traveling Salesman Problem: An Overview of Exact and Approximate Algorithms, Eur. J. Oper. Res., 1992, vol. 59, pp. 231–248.zbMATHCrossRefGoogle Scholar
  15. 15.
    Ralphs, T.K., Kopman, L., Pulleyblank, W.R., and Trotter, L.E., Jr., On the Capacitated Vehicle Routing Problem, Math. Progr., 2003, vol. 94, pp. 343–359.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Toth, P. and Vigo, D., Branch-and-bound Algorithms for the Capacitated VRP, Vehicle Routing Problem, 2001, SIAM, pp. 29–51.Google Scholar
  17. 17.
    Handbook of Discrete and Combinatorial Mathematics, Boca Raton: CRC Press, 2000.Google Scholar
  18. 18.
    Clarke, G. and Right, J.W., Scheduling of Vehicles from a Central Depot to a Number of Delivery Points, Oper. Res., 1963, vol. 11, pp. 568–581.Google Scholar
  19. 19.
    Spasovic, L., Chien, S., and Kelnhofer-Feeley, C., A Methodology for Evaluating of School Bus Routing-A Case Study of Riverdale, in Jersey Transport. Res. Board 80th Annual Meeting, January 7–11, 2001, Washington, TRB Paper no. 01-2088.Google Scholar
  20. 20.
    Tanaev, V.S. and Shkurba, V.V., Vvedenie v teoriyu raspisanii (Introduction to Scheduling Theory), Moscow: Nauka, 1975.Google Scholar
  21. 21.
    Sotskov, Yu.N., Strusevich, V.A., and Tanaev, V.S., Matematicheskie modeli i metody kalendarnogo planirovaniya (Mathematical Models and Methods of Calendar Planning), Minsk: Universitetskoe, 1994.Google Scholar
  22. 22.
    Christofides, N., Graph Theory. An Algorithmic Approach, New York: Academic, 1975. Translated under the title Teoriya grafov. Algoritmicheskii podkhod, Moscow: Mir, 1978.zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. M. Bronshtein
    • 1
  • T. A. Zaiko
    • 1
  1. 1.Ufa State Aviation Technical UniversityUfaRussia

Personalised recommendations